Multivariate modeling of cognitive-motor stimulation on neurovascular coupling: transcranial Doppler used to characterize myogenic and metabolic influences

Neural activation induces changes in cerebral blood flow velocity (CBFV) with separate contributions from resistance-area product (V(RAP)) and critical closing pressure (V(CrCP)). We modeled the dependence of V(RAP) and V(CrCP) on arterial blood pressure (ABP), end-tidal CO(2) (EtCO(2)), and cogniti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Regulatory, integrative and comparative physiology integrative and comparative physiology, 2012-08, Vol.303 (4), p.R395-R407
Hauptverfasser: Panerai, Ronney B, Eyre, Michelle, Potter, John F
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural activation induces changes in cerebral blood flow velocity (CBFV) with separate contributions from resistance-area product (V(RAP)) and critical closing pressure (V(CrCP)). We modeled the dependence of V(RAP) and V(CrCP) on arterial blood pressure (ABP), end-tidal CO(2) (EtCO(2)), and cognitive stimulation to test the hypothesis that V(RAP) reflects myogenic activity while V(CrCP) reflects metabolic pathways. In 14 healthy subjects, CBFV was measured with transcranial Doppler ultrasound, ABP with the Finapres device and EtCO(2) with infrared capnography. Two different paradigms (word or puzzle) were repeated 10 times (30 s on-off), and the corresponding square-wave signal was used, together with ABP and EtCO(2), as inputs to autoregressive-moving average (ARMA) models, which allowed identification of the separate contributions of the three inputs to either V(RAP) or V(CrCP). For both paradigms, the contribution of ABP was mainly manifested through V(RAP) (P < 0.005 for word; P < 0.004 for puzzle), while stimulation mainly contributed to V(CrCP) (P < 0.002 for word; P < 0.033, for puzzle). The contribution of EtCO(2) was relatively small (
ISSN:0363-6119
1522-1490
DOI:10.1152/ajpregu.00161.2012