A High-Resolution Melting Protocol for Rapid and Accurate Differential Diagnosis of Thyroid Nodules
A large majority of thyroid nodules are benign, and only 5% have malignant features on cytological examination. Unfortunately, fine-needle aspiration is inconclusive in approximately 30% of all thyroid biopsies, because the cytological features are indeterminate (suspicious for malignancy but not co...
Gespeichert in:
Veröffentlicht in: | The Journal of molecular diagnostics : JMD 2012-09, Vol.14 (5), p.501-509 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A large majority of thyroid nodules are benign, and only 5% have malignant features on cytological examination. Unfortunately, fine-needle aspiration is inconclusive in approximately 30% of all thyroid biopsies, because the cytological features are indeterminate (suspicious for malignancy but not completely diagnostic or nondiagnostic). Wide panels of somatic mutations have been identified in thyroid cancers, and detection of genetic alterations in fine-needle aspirate has been demonstrated to improve diagnostic accuracy. Nevertheless, the relatively high number of genetic targets to be investigated, in comparison with the low percentage of malignant samples, makes the usual diagnostic protocol both time-consuming and expensive. We developed a reliable and sensitive protocol based on high-resolution melting analysis for the rapid screening of mutations of KRAS, HRAS, NRAS , and BRAF oncogenes in thyroid fine-needle aspirations. The entire procedure can be completed in approximately 48 hours, with a dramatic reduction in costs. The proposed protocol was applied to the analysis of 260 consecutive fine-needle aspiration biopsy (FNAB) samples. In 35 of 252 samples, 36 sequence variants were detected for BRAF (17 samples), NRAS (6 samples), HRAS (3 samples), KRAS codon 12 (9 samples), and KRAS codon 61 (1 sample). |
---|---|
ISSN: | 1525-1578 1943-7811 |
DOI: | 10.1016/j.jmoldx.2012.03.003 |