Development and growth of primordial shoots in Norway spruce buds before visible bud burst in relation to time and temperature in the field

The timing of bud development in ecodormancy is critical for trees in boreal and temperate regions with seasonally alternating climates. The development of vegetative buds and the growth of primordial shoots (the primordial shoot ratio) in Norway spruce were followed by the naked eye and at stereo a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Tree physiology 2012-08, Vol.32 (8), p.987-997
Hauptverfasser: Sutinen, Sirkka, Partanen, Jouni, Viherä-Aarnio, Anneli, Häkkinen, Risto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The timing of bud development in ecodormancy is critical for trees in boreal and temperate regions with seasonally alternating climates. The development of vegetative buds and the growth of primordial shoots (the primordial shoot ratio) in Norway spruce were followed by the naked eye and at stereo and light microscopic levels in fresh-cut and fixed buds obtained by regular field samplings during the spring of 2007, 2008 and 2009. Buds were collected from 15 randomly selected trees (all 16 years old in 2007) of one southern Finnish half-sib family. The air temperature was recorded hourly throughout the observation period. In 2008 and 2009, initial events in the buds, seen as accumulation of lipid droplets in the cortex area, started in mid-March and were depleted in late April, simultaneously with the early development of vascular tissue and primordial needles. In mid-April 2007, however, the development of the buds was at least 10 days ahead as a result of warm spells in March and early April. Variation in the timing of different developmental phases within and among the sample trees was negligible. There was no clear one-to-one correspondence between the externally visible and the internal development of the buds. The dependence of the primordial shoot ratio on different types of temperature sum was studied by means of regression analysis. High coefficients of determination (R(2) ≈ 95%) were attained with several combinations of the starting time (beginning of the year/vernal equinox), the threshold value (from -3 to +5 °C), and the time step (hour/day) used in the temperature summation, i.e., the prediction power of the primordial shoot ratio models turned out to be high, but the parameter estimate values were not unambiguous. According to our results, temperature sums describe the growth of the primordial shoot inside the bud before bud burst. Thus, the results provide a realistic interpretation for the present phenological models of bud development that are based on temperature sums and external observations of bud burst only, and they also provide new tools for improving the models.
ISSN:0829-318X
1758-4469
DOI:10.1093/treephys/tps063