The human H3N2 influenza viruses A/Victoria/3/75 and A/Hiroshima/52/2005 preferentially bind to alpha 2-3-sialylated monosialogangliosides with fucosylated poly-N-acetyllactosaminyl chains

Among influenza A viruses, subtype H3N2 is the major cause of human influenza morbidity and is associated with seasonal epidemics causing annually half million deaths worldwide. Influenza A virus infection is initiated via hemagglutinin that binds to terminally sialylated glycoconjugates exposed on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Glycobiology (Oxford) 2012-08, Vol.22 (8), p.1055-1076
Hauptverfasser: Meisen, Iris, Dzudzek, Tabea, Ehrhardt, Christina, Ludwig, Stephan, Mormann, Michael, Rosenbrueck, Regina, Luemen, Regine, Kniep, Bernhard, Karch, Helge, Muething, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Among influenza A viruses, subtype H3N2 is the major cause of human influenza morbidity and is associated with seasonal epidemics causing annually half million deaths worldwide. Influenza A virus infection is initiated via hemagglutinin that binds to terminally sialylated glycoconjugates exposed on the surface of target cells. Gangliosides from human granulocytes were probed using thin-layer chromatography overlay assays for their binding potential to H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. Highly polar gangliosides with poly-N-acetyllactosaminyl chains showing low chromatographic mobility exhibited strong virus adhesion which was entirely abolished by sialidase treatment. Auxiliary overlay assays using anti-sialyl Lewis super(x) (sLe super(x)) monoclonal antibodies showed identical binding patterns compared with those performed with the viruses. A comprehensive structural analysis of fractionated gangliosides by electrospray ionization quadrupole time-of-flight mass spectrometry revealed sLe super(x) gangliosides with terminal Neu5Ac alpha 2-3Gal beta 1-4(Fuc alpha 1-3)GlcNAc epitope and extended neolacto (nLc)-series core structures as the preferential virus binding gangliosides. More precisely, sLe super(x) gangliosides with nLc8, nLc10 and nLc12Cer cores, carrying sphingosine (d18:1) and a fatty acid with variable chain length (mostly C24:0, C24:1 or C16:0) in the ceramide moiety and one or two additional internal fucose residues in the oligosaccharide portion, were identified as the preferred receptors recognized by H3N2 virus strains A/Victoria/3/75 and A/Hiroshima/52/2005. This study describes glycan-binding requirements of hemagglutinin beyond binding to glycans with a specific sialic acid linkage of as yet undefined neutrophil receptors acting as ligands for H3N2 viruses. In addition, our results pose new questions on the biological and clinical relevance of this unexpected specificity of a subtype of influenza A viruses.
ISSN:0959-6658
1460-2423
DOI:10.1093/glycob/cws077