Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action

Hydrogen peroxide is extensively used as a biocide, particularly in applications where its decomposition into non-toxic by-products is important. Although increasing information on the biocidal efficacy of hydrogen peroxide is available, there is still little understanding of its biocidal mechanisms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of antimicrobial chemotherapy 2012-07, Vol.67 (7), p.1589-1596
Hauptverfasser: Linley, Ezra, Denyer, Stephen P, McDonnell, Gerald, Simons, Claire, Maillard, Jean-Yves
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Hydrogen peroxide is extensively used as a biocide, particularly in applications where its decomposition into non-toxic by-products is important. Although increasing information on the biocidal efficacy of hydrogen peroxide is available, there is still little understanding of its biocidal mechanisms of action. This review aims to combine past and novel evidence of interactions between hydrogen peroxide and the microbial cell and its components, while reflecting on alternative applications that make use of gaseous hydrogen peroxide. It is currently believed that the Fenton reaction leading to the production of free hydroxyl radicals is the basis of hydrogen peroxide action and evidence exists for this reaction leading to oxidation of DNA, proteins and membrane lipids in vivo. Investigations of DNA oxidation suggest that the oxidizing radical is the ferryl radical formed from DNA-associated iron, not hydroxyl. Investigations of protein oxidation suggest that selective oxidation of certain proteins might occur, and that vapour-phase hydrogen peroxide is a more potent oxidizer of protein than liquid-phase hydrogen peroxide. Few studies have investigated membrane damage by hydrogen peroxide, though it is suggested that this is important for the biocidal mechanism. No studies have investigated damage to microbial cell components under conditions commonly used for sterilization. Despite extensive studies of hydrogen peroxide toxicity, the mechanism of its action as a biocide requires further investigation.
ISSN:0305-7453
1460-2091
DOI:10.1093/jac/dks129