Mathematical modeling of distance constraints on two-dimensional φ-objects
This paper introduces the concept of radical-free pseudonormalized Φ-functions, which allows one to describe constraints on minimum and maximum allowable distances between two-dimensional φ-objects. Translations and rotations of φ-objects in a two-dimensional Euclidean space are allowable. The theor...
Gespeichert in:
Veröffentlicht in: | Cybernetics and systems analysis 2012-05, Vol.48 (3), p.330-334 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces the concept of radical-free pseudonormalized Φ-functions, which allows one to describe constraints on minimum and maximum allowable distances between two-dimensional φ-objects. Translations and rotations of φ-objects in a two-dimensional Euclidean space are allowable. The theorem on the existence of a radical-free pseudonormalized Φ-function for a pair of arbitrary-shaped φ-objects whose frontiers are formed by the union of line segments and circular arcs is formulated. An efficient algorithm is proposed to derive pseudonormalized Φ-functions. |
---|---|
ISSN: | 1060-0396 1573-8337 |
DOI: | 10.1007/s10559-012-9412-0 |