Recrystallization and Precipitate Coarsening in Pb-Free Solder Joints During Thermomechanical Fatigue
The recrystallization of β-Sn profoundly affects deformation and failure of Sn-Ag-Cu solder joints in thermomechanical fatigue (TMF) testing. The numerous grain boundaries of recrystallized β-Sn enable grain boundary sliding, which is absent in as-solidified solder joints. Fatigue cracks initiate at...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2012-02, Vol.41 (2), p.241-252 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The recrystallization of β-Sn profoundly affects deformation and failure of Sn-Ag-Cu solder joints in thermomechanical fatigue (TMF) testing. The numerous grain boundaries of recrystallized β-Sn enable grain boundary sliding, which is absent in as-solidified solder joints. Fatigue cracks initiate at, and propagate along, recrystallized grain boundaries, eventually leading to intergranular fracture. The recrystallization behavior of Sn-Ag-Cu solder joints was examined in three different TMF conditions for five different ball grid array component designs. Based on the experimental observations, a TMF damage accumulation model is proposed: (1) strain-enhanced coarsening of secondary precipitates of Ag
3
Sn and Cu
6
Sn
5
starts at joint corners, eventually allowing recrystallization of the Sn grain there as well; (2) coarsening and recrystallization continue to develop into the interior of the joints, while fatigue crack growth lags behind; (3) fatigue cracks finally progress through the recrystallized region. Independent of the TMF condition, the recrystallization appeared to be essentially complete after somewhat less than 50% of the characteristic life, while it took another 50% to 75% of the lifetime for a fatigue crack to propagate through the recrystallized region. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-011-1762-2 |