Creep Behavior of Bi-Containing Lead-Free Solder Alloys
The creep behavior of Sn-3.0Ag-0.5Cu (SAC305), Sn-3.4Ag-1.0Cu-3.3Bi (SAC-Bi), and Sn-3.4Ag-4.8Bi (SnAg-Bi, all wt.%) was studied in constant-stress creep tests from room temperature to 125°C. The alloys were tested in two microstructural conditions. As-cast alloys had a composite eutectic-primary Sn...
Gespeichert in:
Veröffentlicht in: | Journal of electronic materials 2012-02, Vol.41 (2), p.190-203 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The creep behavior of Sn-3.0Ag-0.5Cu (SAC305), Sn-3.4Ag-1.0Cu-3.3Bi (SAC-Bi), and Sn-3.4Ag-4.8Bi (SnAg-Bi, all wt.%) was studied in constant-stress creep tests from room temperature to 125°C. The alloys were tested in two microstructural conditions. As-cast alloys had a composite eutectic-primary Sn structure, while in aged alloys the eutectic regions were replaced by a continuous Sn matrix with coarsened intermetallic (Cu
6
Sn
5
and Ag
3
Sn) particles. After aging, Bi in SAC-Bi and SnAg-Bi was found as precipitates at grain boundaries and grain interiors. The creep resistance of of-cast SAC305 was higher than that of as-cast Bi-containing alloys, but after aging the SAC305 had the lowest creep resistance. The creep strain rates in SAC-Bi and SnAg-Bi were much less affected by aging. The apparent activation energy for creep was also changed more for SAC305 than for the other two alloys. The creep behavior of SAC-Bi and SnAg-Bi can be understood by considering the solubility of Bi in Sn. The difference in creep behavior between as-cast and aged SAC-Bi is greatly reduced when room-temperature test results are excluded from analysis. This suggests that the strongest influence on creep in these alloys is due to Bi solute interaction with moving dislocations during deformation. |
---|---|
ISSN: | 0361-5235 1543-186X |
DOI: | 10.1007/s11664-011-1748-0 |