Effects of lattice defects on indentation-induced plasticity initiation behavior in metals

Plasticity initiation behavior that appears as a pop-in phenomenon on a loading process during indentation-induced deformation was investigated to reveal the effects of lattice defects such as grain boundary and solute element for various metallic materials including Fe alloys through instrumented n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials research 2012-07, Vol.27 (13), p.1742-1749
Hauptverfasser: Ohmura, T., Zhang, L., Sekido, K., Tsuzaki, K.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Plasticity initiation behavior that appears as a pop-in phenomenon on a loading process during indentation-induced deformation was investigated to reveal the effects of lattice defects such as grain boundary and solute element for various metallic materials including Fe alloys through instrumented nanoindentation techniques. The critical load Pc of pop-in on a loading process is lower in the vicinity of the grain boundary than in the grain interior, but the relative hardness of the boundary is equal to or greater than that in grain interior. In-solution Si produces a larger increase in the Pc for both the grain boundary and the grain interior in the Fe–Si alloy than in the interstitial-free steel. The maximum shear stress corresponding to the Pc underneath the indenter is directly proportional to the shear modulus in single crystals with various crystallographic structures. Microstructural effects on the Pc are considered based on some dislocation models.
ISSN:0884-2914
2044-5326
DOI:10.1557/jmr.2012.161