Bayesian analysis of quantile regression for censored dynamic panel data

This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational statistics 2012-06, Vol.27 (2), p.359-380
Hauptverfasser: Kobayashi, Genya, Kozumi, Hideo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper develops a Bayesian approach to analyzing quantile regression models for censored dynamic panel data. We employ a likelihood-based approach using the asymmetric Laplace error distribution and introduce lagged observed responses into the conditional quantile function. We also deal with the initial conditions problem in dynamic panel data models by introducing correlated random effects into the model. For posterior inference, we propose a Gibbs sampling algorithm based on a location-scale mixture representation of the asymmetric Laplace distribution. It is shown that the mixture representation provides fully tractable conditional posterior densities and considerably simplifies existing estimation procedures for quantile regression models. In addition, we explain how the proposed Gibbs sampler can be utilized for the calculation of marginal likelihood and the modal estimation. Our approach is illustrated with real data on medical expenditures.
ISSN:0943-4062
1613-9658
DOI:10.1007/s00180-011-0263-3