Robotic load balancing for mobility-on-demand systems

In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pickup vehicles, and drive (or are driven) to their destination station where...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The International journal of robotics research 2012-06, Vol.31 (7), p.839-854
Hauptverfasser: Pavone, Marco, Smith, Stephen L, Frazzoli, Emilio, Rus, Daniela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we develop methods for maximizing the throughput of a mobility-on-demand urban transportation system. We consider a finite group of shared vehicles, located at a set of stations. Users arrive at the stations, pickup vehicles, and drive (or are driven) to their destination station where they drop-off the vehicle. When some origins and destinations are more popular than others, the system will inevitably become out of balance: vehicles will build up at some stations, and become depleted at others. We propose a robotic solution to this rebalancing problem that involves empty robotic vehicles autonomously driving between stations. Specifically, we utilize a fluid model for the customers and vehicles in the system. Then, we develop a rebalancing policy that lets every station reach an equilibrium in which there are excess vehicles and no waiting customers and that minimizes the number of robotic vehicles performing rebalancing trips. We show that the optimal rebalancing policy can be found as the solution to a linear program. We use this solution to develop a real-time rebalancing policy which can operate in highly variable environments. Finally, we verify policy performance in a simulated mobility-on-demand environment and in hardware experiments.
ISSN:0278-3649
1741-3176
DOI:10.1177/0278364912444766