An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms

This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Circuits, systems, and signal processing systems, and signal processing, 2001, Vol.20 (1), p.77-88
Hauptverfasser: Lizhi, Cheng, Zengrong, Jiang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 88
container_issue 1
container_start_page 77
container_title Circuits, systems, and signal processing
container_volume 20
creator Lizhi, Cheng
Zengrong, Jiang
description This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/BF01204923
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031305602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651100281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</originalsourceid><addsrcrecordid>eNpdkE9LxDAQxYMouP65-AkCXkSoZpq0TY8qrgqCF0UPQpmmiUbSZE26wn57IysqnmYYfu8x7xFyAOwEGGtOz-cMSibakm-QGVQciko2cpPMWNnIgkl42iY7Kb0xBm2mZuT5zFNtjFVW-4miewnRTq8jNSFStVLOKqqC_whuOdngaY9JDzQvBtNULIJb-TBadBT9sL490imiT1k_pj2yZdAlvf89d8nD_PL-4rq4vbu6uTi7LRQHORUghqpFVQrRt8AHzoVQaHoc-hJqU2rUDTZSaWi0Nn0taw4oylop2aAwjeC75Gjtu4jhfanT1I02Ke0ceh2WqQPGgbOqZmVGD_-hb2EZff4uU8DaGlgtM3W8plQMKUVtukW0I8ZVhrqvorvfov9YYlLoTI6vbPpRtEJUNfBPOLR8pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010961068</pqid></control><display><type>article</type><title>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</title><source>SpringerLink Journals</source><creator>Lizhi, Cheng ; Zengrong, Jiang</creator><creatorcontrib>Lizhi, Cheng ; Zengrong, Jiang</creatorcontrib><description>This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/BF01204923</identifier><identifier>CODEN: CSSPEH</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Circuits ; Convolution ; Exact sciences and technology ; Fourier transforms ; Information, signal and communications theory ; Mathematical analysis ; Mathematical methods ; Signal processing ; Telecommunications and information theory ; Transforms ; Two dimensional</subject><ispartof>Circuits, systems, and signal processing, 2001, Vol.20 (1), p.77-88</ispartof><rights>2001 INIST-CNRS</rights><rights>Birkhäuser 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</citedby><cites>FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=944561$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lizhi, Cheng</creatorcontrib><creatorcontrib>Zengrong, Jiang</creatorcontrib><title>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</title><title>Circuits, systems, and signal processing</title><description>This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circuits</subject><subject>Convolution</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical methods</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>Two dimensional</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE9LxDAQxYMouP65-AkCXkSoZpq0TY8qrgqCF0UPQpmmiUbSZE26wn57IysqnmYYfu8x7xFyAOwEGGtOz-cMSibakm-QGVQciko2cpPMWNnIgkl42iY7Kb0xBm2mZuT5zFNtjFVW-4miewnRTq8jNSFStVLOKqqC_whuOdngaY9JDzQvBtNULIJb-TBadBT9sL490imiT1k_pj2yZdAlvf89d8nD_PL-4rq4vbu6uTi7LRQHORUghqpFVQrRt8AHzoVQaHoc-hJqU2rUDTZSaWi0Nn0taw4oylop2aAwjeC75Gjtu4jhfanT1I02Ke0ceh2WqQPGgbOqZmVGD_-hb2EZff4uU8DaGlgtM3W8plQMKUVtukW0I8ZVhrqvorvfov9YYlLoTI6vbPpRtEJUNfBPOLR8pA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Lizhi, Cheng</creator><creator>Zengrong, Jiang</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2001</creationdate><title>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</title><author>Lizhi, Cheng ; Zengrong, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circuits</topic><topic>Convolution</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical methods</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lizhi, Cheng</creatorcontrib><creatorcontrib>Zengrong, Jiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lizhi, Cheng</au><au>Zengrong, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</atitle><jtitle>Circuits, systems, and signal processing</jtitle><date>2001</date><risdate>2001</risdate><volume>20</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><coden>CSSPEH</coden><abstract>This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01204923</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0278-081X
ispartof Circuits, systems, and signal processing, 2001, Vol.20 (1), p.77-88
issn 0278-081X
1531-5878
language eng
recordid cdi_proquest_miscellaneous_1031305602
source SpringerLink Journals
subjects Algorithms
Applied sciences
Circuits
Convolution
Exact sciences and technology
Fourier transforms
Information, signal and communications theory
Mathematical analysis
Mathematical methods
Signal processing
Telecommunications and information theory
Transforms
Two dimensional
title An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20algorithm%20for%20cyclic%20convolution%20based%20on%20fast-polynomial%20and%20fast-W%20transforms&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Lizhi,%20Cheng&rft.date=2001&rft.volume=20&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0278-081X&rft.eissn=1531-5878&rft.coden=CSSPEH&rft_id=info:doi/10.1007/BF01204923&rft_dat=%3Cproquest_cross%3E2651100281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010961068&rft_id=info:pmid/&rfr_iscdi=true