An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms
This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2001, Vol.20 (1), p.77-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 88 |
---|---|
container_issue | 1 |
container_start_page | 77 |
container_title | Circuits, systems, and signal processing |
container_volume | 20 |
creator | Lizhi, Cheng Zengrong, Jiang |
description | This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT] |
doi_str_mv | 10.1007/BF01204923 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1031305602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2651100281</sourcerecordid><originalsourceid>FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</originalsourceid><addsrcrecordid>eNpdkE9LxDAQxYMouP65-AkCXkSoZpq0TY8qrgqCF0UPQpmmiUbSZE26wn57IysqnmYYfu8x7xFyAOwEGGtOz-cMSibakm-QGVQciko2cpPMWNnIgkl42iY7Kb0xBm2mZuT5zFNtjFVW-4miewnRTq8jNSFStVLOKqqC_whuOdngaY9JDzQvBtNULIJb-TBadBT9sL490imiT1k_pj2yZdAlvf89d8nD_PL-4rq4vbu6uTi7LRQHORUghqpFVQrRt8AHzoVQaHoc-hJqU2rUDTZSaWi0Nn0taw4oylop2aAwjeC75Gjtu4jhfanT1I02Ke0ceh2WqQPGgbOqZmVGD_-hb2EZff4uU8DaGlgtM3W8plQMKUVtukW0I8ZVhrqvorvfov9YYlLoTI6vbPpRtEJUNfBPOLR8pA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1010961068</pqid></control><display><type>article</type><title>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</title><source>SpringerLink Journals</source><creator>Lizhi, Cheng ; Zengrong, Jiang</creator><creatorcontrib>Lizhi, Cheng ; Zengrong, Jiang</creatorcontrib><description>This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0278-081X</identifier><identifier>EISSN: 1531-5878</identifier><identifier>DOI: 10.1007/BF01204923</identifier><identifier>CODEN: CSSPEH</identifier><language>eng</language><publisher>Heidelberg: Springer</publisher><subject>Algorithms ; Applied sciences ; Circuits ; Convolution ; Exact sciences and technology ; Fourier transforms ; Information, signal and communications theory ; Mathematical analysis ; Mathematical methods ; Signal processing ; Telecommunications and information theory ; Transforms ; Two dimensional</subject><ispartof>Circuits, systems, and signal processing, 2001, Vol.20 (1), p.77-88</ispartof><rights>2001 INIST-CNRS</rights><rights>Birkhäuser 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</citedby><cites>FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=944561$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Lizhi, Cheng</creatorcontrib><creatorcontrib>Zengrong, Jiang</creatorcontrib><title>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</title><title>Circuits, systems, and signal processing</title><description>This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Circuits</subject><subject>Convolution</subject><subject>Exact sciences and technology</subject><subject>Fourier transforms</subject><subject>Information, signal and communications theory</subject><subject>Mathematical analysis</subject><subject>Mathematical methods</subject><subject>Signal processing</subject><subject>Telecommunications and information theory</subject><subject>Transforms</subject><subject>Two dimensional</subject><issn>0278-081X</issn><issn>1531-5878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkE9LxDAQxYMouP65-AkCXkSoZpq0TY8qrgqCF0UPQpmmiUbSZE26wn57IysqnmYYfu8x7xFyAOwEGGtOz-cMSibakm-QGVQciko2cpPMWNnIgkl42iY7Kb0xBm2mZuT5zFNtjFVW-4miewnRTq8jNSFStVLOKqqC_whuOdngaY9JDzQvBtNULIJb-TBadBT9sL490imiT1k_pj2yZdAlvf89d8nD_PL-4rq4vbu6uTi7LRQHORUghqpFVQrRt8AHzoVQaHoc-hJqU2rUDTZSaWi0Nn0taw4oylop2aAwjeC75Gjtu4jhfanT1I02Ke0ceh2WqQPGgbOqZmVGD_-hb2EZff4uU8DaGlgtM3W8plQMKUVtukW0I8ZVhrqvorvfov9YYlLoTI6vbPpRtEJUNfBPOLR8pA</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Lizhi, Cheng</creator><creator>Zengrong, Jiang</creator><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7SP</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope></search><sort><creationdate>2001</creationdate><title>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</title><author>Lizhi, Cheng ; Zengrong, Jiang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c318t-14d59ac244b913d3344cafbadb216f2eae7a78ce17eefb68631a426cc87a4f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Circuits</topic><topic>Convolution</topic><topic>Exact sciences and technology</topic><topic>Fourier transforms</topic><topic>Information, signal and communications theory</topic><topic>Mathematical analysis</topic><topic>Mathematical methods</topic><topic>Signal processing</topic><topic>Telecommunications and information theory</topic><topic>Transforms</topic><topic>Two dimensional</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lizhi, Cheng</creatorcontrib><creatorcontrib>Zengrong, Jiang</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Circuits, systems, and signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lizhi, Cheng</au><au>Zengrong, Jiang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms</atitle><jtitle>Circuits, systems, and signal processing</jtitle><date>2001</date><risdate>2001</risdate><volume>20</volume><issue>1</issue><spage>77</spage><epage>88</epage><pages>77-88</pages><issn>0278-081X</issn><eissn>1531-5878</eissn><coden>CSSPEH</coden><abstract>This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT]</abstract><cop>Heidelberg</cop><pub>Springer</pub><doi>10.1007/BF01204923</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-081X |
ispartof | Circuits, systems, and signal processing, 2001, Vol.20 (1), p.77-88 |
issn | 0278-081X 1531-5878 |
language | eng |
recordid | cdi_proquest_miscellaneous_1031305602 |
source | SpringerLink Journals |
subjects | Algorithms Applied sciences Circuits Convolution Exact sciences and technology Fourier transforms Information, signal and communications theory Mathematical analysis Mathematical methods Signal processing Telecommunications and information theory Transforms Two dimensional |
title | An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T04%3A10%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20efficient%20algorithm%20for%20cyclic%20convolution%20based%20on%20fast-polynomial%20and%20fast-W%20transforms&rft.jtitle=Circuits,%20systems,%20and%20signal%20processing&rft.au=Lizhi,%20Cheng&rft.date=2001&rft.volume=20&rft.issue=1&rft.spage=77&rft.epage=88&rft.pages=77-88&rft.issn=0278-081X&rft.eissn=1531-5878&rft.coden=CSSPEH&rft_id=info:doi/10.1007/BF01204923&rft_dat=%3Cproquest_cross%3E2651100281%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1010961068&rft_id=info:pmid/&rfr_iscdi=true |