An efficient algorithm for cyclic convolution based on fast-polynomial and fast-W transforms
This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D...
Gespeichert in:
Veröffentlicht in: | Circuits, systems, and signal processing systems, and signal processing, 2001, Vol.20 (1), p.77-88 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper first presents a fastW-transform (FWT) algorithm for computing one-dimensional cyclic and skew-cyclic convolutions. By using this FWT in conjunction with the fast polynomial transform (FPT), an efficient algorithm is then proposed for calculating the two-dimensional cyclic convolution (2D CC). Compared to the conventional row-column 2D discrete Fourier transform algorithm or the FPT Fast Fourier transform algorithm for 2D CC, the proposed algorithm achieves 65% or 40% savings in the number of multiplications, respectively. The number of additions required is also reduced considerably.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0278-081X 1531-5878 |
DOI: | 10.1007/BF01204923 |