On higher-dimensional contrast structure of singularly perturbed Dirichlet problem

In this paper,we address the existence and asymptotic analysis of higher-dimensional contrast structure of singularly perturbed Dirichlet problem.Based on the existence,an asymptotical analysis of a steplike contrast structure (i.e.,an internal transition layer solution) is studied by the boundary f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Mathematics 2012-03, Vol.55 (3), p.495-507
Hauptverfasser: Ni, MingKang, Wang, ZhiMing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper,we address the existence and asymptotic analysis of higher-dimensional contrast structure of singularly perturbed Dirichlet problem.Based on the existence,an asymptotical analysis of a steplike contrast structure (i.e.,an internal transition layer solution) is studied by the boundary function method via a proposed smooth connection.In the framework of this paper,we propose a first integral condition,under which the existence of a heteroclinic orbit connecting two equilibrium points is ensured in a higher-dimensional fast phase space.Then,the step-like contrast structure is constructed,and the internal transition time is determined.Meanwhile,the uniformly valid asymptotical expansion of such an available step-like contrast structure is obtained.Finally,an example is presented to illustrate the result.
ISSN:1674-7283
1006-9283
1869-1862
DOI:10.1007/s11425-012-4375-1