Universal Divergence Estimation for Finite-Alphabet Sources

This paper studies universal estimation of divergence from the realizations of two unknown finite-alphabet sources. Two algorithms that borrow techniques from data compression are presented. The first divergence estimator applies the Burrows-Wheeler block sorting transform to the concatenation of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2006-08, Vol.52 (8), p.3456-3475
Hauptverfasser: Haixiao Cai, Kulkarni, S.R., Verdu, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper studies universal estimation of divergence from the realizations of two unknown finite-alphabet sources. Two algorithms that borrow techniques from data compression are presented. The first divergence estimator applies the Burrows-Wheeler block sorting transform to the concatenation of the two realizations; consistency of this estimator is shown for all finite-memory sources. The second divergence estimator is based on the Context Tree Weighting method; consistency is shown for all sources whose memory length does not exceed a known bound. Experimental results show that both algorithms perform similarly and outperform string-matching and plug-in methods
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2006.878182