HGLMs for quality improvement

A modelling approach has been useful for the analysis of data from robust designs for quality improvement. Recently, Robinson et al. (J. Qual. Technol. 2006; 38:65–38) proposed the use of generalized linear mixed models (GLMMs) and they used the marginal quasi‐likelihood (MQL) method of Breslow and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied stochastic models in business and industry 2011-05, Vol.27 (3), p.315-328
Hauptverfasser: Lee, Youngjo, Nelder, John A., Park, Heejin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A modelling approach has been useful for the analysis of data from robust designs for quality improvement. Recently, Robinson et al. (J. Qual. Technol. 2006; 38:65–38) proposed the use of generalized linear mixed models (GLMMs) and they used the marginal quasi‐likelihood (MQL) method of Breslow and Clayton (J. Am. Statist. Ass. 1983; 88:9–25). Hierarchical generalized linear models (HGLMs) extend GLMMs by allowing structured dispersions and conjugate distributions of arbitrary GLM families for random effects. In this paper we use two examples to illustrate how these additional features in HGLMs can be used for the analysis of data from quality‐improvement experiments. We also show that the hierarchical likelihood (HL, or h‐likelihood) estimators have better statistical properties than the MQL estimators. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:1524-1904
1526-4025
1526-4025
DOI:10.1002/asmb.840