Rapid Synthesis and Simulation of Computational Circuits in an MPPA

A computational circuit is custom-designed hardware which promises to offer maximum speedup of computationally intensive software algorithms. However, the practical needs to manage development cost and many low-level physical design details erodes much of the potential speedup by distracting attenti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of signal processing systems 2012-04, Vol.67 (1), p.47-63
Hauptverfasser: Grant, David, Smecher, Graeme, Lemieux, Guy G. F., Francis, Rosemary
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A computational circuit is custom-designed hardware which promises to offer maximum speedup of computationally intensive software algorithms. However, the practical needs to manage development cost and many low-level physical design details erodes much of the potential speedup by distracting attention away from high-level architectural design. Instead, designers need an inexpensive, processor-like platform where computational circuits can be rapidly synthesized and simulated. This enables rapid architectural evolution and mitigates the risk of producing custom hardware. In this paper we present a tool flow (RVETool) for compiling computational circuits into a massively parallel processor array (MPPA). We demonstrate the CAD runtime is on average 70× faster than FPGA tools, with a circuit speed 5.8× slower than FPGA devices. Unlike the fixed logic capacity of FPGAs, RVETool can trade area for simulation performance by targeting a wide range in the number of processor cores. We also demonstrate tool scalability to very large circuits, synthesizing, placing, and routing a ≈1.6 million gate random circuit in 54 min.
ISSN:1939-8018
1939-8115
DOI:10.1007/s11265-010-0562-x