Largely enhanced ductility of immiscible high density polyethylene/polyamide 6 blends via nano-bridge effect of functionalized multiwalled carbon nanotubes
Immiscible polymer blends usually exhibit negative deviation in mechanical properties compared with the corresponding pure polymers due to the weak interfacial bonding between the two polymers. Due to the bridge effect of the oriented carbon nanotubes (CNTs) on the craze and crack development at the...
Gespeichert in:
Veröffentlicht in: | Polymers for advanced technologies 2011-12, Vol.22 (12), p.2533-2542 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Immiscible polymer blends usually exhibit negative deviation in mechanical properties compared with the corresponding pure polymers due to the weak interfacial bonding between the two polymers. Due to the bridge effect of the oriented carbon nanotubes (CNTs) on the craze and crack development at the load of stress, CNTs have been proved to be efficient toughening agent for polymers. In this work, functionalized multiwalled carbon nanotubes (FMWCNTs) have been introduced into immiscible high density polyethylene/polyamide 6 (HDPE/PA6) blends through different sample preparation methods. The mechanical measurements demonstrate that, when the nanocomposite is prepared from the HDPE master batch, the sample exhibits excellent tensile strength and toughness simultaneously. For all the nanocomposites, FMWCNTs tend to migrate and/or maintain in PA6 particles, leading to the variation of the crystallization behavior in PA6 phase. Further results based on morphologies characterization indicate that the intensified interfacial adhesion between HDPE and PA6, which is realized by the nano‐bridge effect of FMWCNTs in the interfaces, is the main reason for the largely improved ductility. Copyright © 2010 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 1042-7147 1099-1581 1099-1581 |
DOI: | 10.1002/pat.1796 |