Ambiguity domain-based identification of altered gait pattern in ALS disorder

The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when usin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of neural engineering 2012-08, Vol.9 (4), p.046004-046004
Hauptverfasser: Sugavaneswaran, L, Umapathy, K, Krishnan, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The onset of a neurological disorder, such as amyotrophic lateral sclerosis (ALS), is so subtle that the symptoms are often overlooked, thereby ruling out the option of early detection of the abnormality. In the case of ALS, over 75% of the affected individuals often experience awkwardness when using their limbs, which alters their gait, i.e. stride and swing intervals. The aim of this work is to suitably represent the non-stationary characteristics of gait (fluctuations in stride and swing intervals) in order to facilitate discrimination between normal and ALS subjects. We define a simple-yet-representative feature vector space by exploiting the ambiguity domain (AD) to achieve efficient classification between healthy and pathological gait stride interval. The stride-to-stride fluctuations and the swing intervals of 16 healthy control and 13 ALS-affected subjects were analyzed. Three features that are representative of the gait signal characteristics were extracted from the AD-space and are fed to linear discriminant analysis and neural network classifiers, respectively. Overall, maximum accuracies of 89.2% (LDA) and 100% (NN) were obtained in classifying the ALS gait.
ISSN:1741-2560
1741-2552
DOI:10.1088/1741-2560/9/4/046004