A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres
A good route (template-directed synthetic route) for the fabrication of ZnO hollow nanospheres (ZnO-HNSPs) was proposed. ZnO hollow nanosphere is a wonderful platform to immobilize glucose oxidase for glucose biosensor owing to the high specific surface area and high isoelectric point (IEP). Along w...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2011-07, Vol.155 (1), p.304-310 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A good route (template-directed synthetic route) for the fabrication of ZnO hollow nanospheres (ZnO-HNSPs) was proposed. ZnO hollow nanosphere is a wonderful platform to immobilize glucose oxidase for glucose biosensor owing to the high specific surface area and high isoelectric point (IEP). Along with nafion and glucose oxidase (GOD), a glucose sensor was designed. Nafion/ZnO-HNSPs/GOD/GCE displays higher catalytic activity toward the glucose oxidation than Nafion/ZnO nano-Flowers/GOD/GCE. Linear response was obtained over a concentration range from 5.0
×
10
−3
mM to 13.15
mM with a detection limit of 1.0
μM (S/N
=
3), and the sensitivity was 65.82
μA/(mM
cm
2). Satisfyingly, the Nafion/ZnO-HNSPs/GOD/GCE could effectively avoid the interferences from the common interfering species such as uric acid (UA), ascorbic acid (AA), dopamine (DA) and fructose. The Nafion/ZnO-HNSPs/GOD modified electrode allows high sensitivity, excellently selective, stable, and fast amperometric sensing of glucose and thus is promising for the future development of glucose sensors. |
---|---|
ISSN: | 0925-4005 1873-3077 |
DOI: | 10.1016/j.snb.2010.12.040 |