A glucose oxidase immobilization platform for glucose biosensor using ZnO hollow nanospheres

A good route (template-directed synthetic route) for the fabrication of ZnO hollow nanospheres (ZnO-HNSPs) was proposed. ZnO hollow nanosphere is a wonderful platform to immobilize glucose oxidase for glucose biosensor owing to the high specific surface area and high isoelectric point (IEP). Along w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2011-07, Vol.155 (1), p.304-310
Hauptverfasser: Fang, Bin, Zhang, Cuihong, Wang, Guangfeng, Wang, Meifang, Ji, Yulan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A good route (template-directed synthetic route) for the fabrication of ZnO hollow nanospheres (ZnO-HNSPs) was proposed. ZnO hollow nanosphere is a wonderful platform to immobilize glucose oxidase for glucose biosensor owing to the high specific surface area and high isoelectric point (IEP). Along with nafion and glucose oxidase (GOD), a glucose sensor was designed. Nafion/ZnO-HNSPs/GOD/GCE displays higher catalytic activity toward the glucose oxidation than Nafion/ZnO nano-Flowers/GOD/GCE. Linear response was obtained over a concentration range from 5.0 × 10 −3 mM to 13.15 mM with a detection limit of 1.0 μM (S/N = 3), and the sensitivity was 65.82 μA/(mM cm 2). Satisfyingly, the Nafion/ZnO-HNSPs/GOD/GCE could effectively avoid the interferences from the common interfering species such as uric acid (UA), ascorbic acid (AA), dopamine (DA) and fructose. The Nafion/ZnO-HNSPs/GOD modified electrode allows high sensitivity, excellently selective, stable, and fast amperometric sensing of glucose and thus is promising for the future development of glucose sensors.
ISSN:0925-4005
1873-3077
DOI:10.1016/j.snb.2010.12.040