Characterization of interactions between barley and various host-specific subgroups of Magnaporthe oryzae and M. grisea

The Magnaporthe oryzae – M. grisea species complex is composed of several host-specific subgroups, but does not contain a barley-specific subgroup. To characterize the relationship between barley and these subgroups, we inoculated 24 barley cultivars separately with each of 18 isolates from various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of general plant pathology : JGPP 2012-07, Vol.78 (4), p.237-246
Hauptverfasser: Hyon, Gang-Su, Nga, Nguyen Thi Thanh, Chuma, Izumi, Inoue, Yoshihiro, Asano, Hokuto, Murata, Nobuaki, Kusaba, Motoaki, Tosa, Yukio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Magnaporthe oryzae – M. grisea species complex is composed of several host-specific subgroups, but does not contain a barley-specific subgroup. To characterize the relationship between barley and these subgroups, we inoculated 24 barley cultivars separately with each of 18 isolates from various hosts. The interactions between these cultivars and isolates included various reactions from nonhost-like immune responses to typical host responses. Evenly closely related isolates of the blast fungi caused such contrasting reactions. The immune responses of barley cultivars against a Setaria isolate, Si-1J, were examined in detail. An infection assay with near-isogenic fungal strains suggested that PWT1 , which was first identified as a major gene conditioning the avirulence of Si-1J on wheat, was involved in the avirulence on two-thirds of the barley cultivars. At the cytological level, the immune responses were associated with both papilla formation and hypersensitive reaction (HR). Of these two, however, HR played a more critical role than papilla formation. Studying the interactions of barley with M. oryzae and M. grisea may reveal various steps in the process of host specialization of a parasite species and the concomitant evolution of host resistance.
ISSN:1345-2630
1610-739X
DOI:10.1007/s10327-012-0386-6