The Complement System: An Unexpected Role in Synaptic Pruning During Development and Disease

An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The fu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of neuroscience 2012-01, Vol.35 (1), p.369-389
Hauptverfasser: STEPHAN, Alexander H, BARRES, Ben A, STEVENS, Beth
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:An unexpected role for the classical complement cascade in the elimination of central nervous system (CNS) synapses has recently been discovered. Complement proteins are localized to developing CNS synapses during periods of active synapse elimination and are required for normal brain wiring. The function of complement proteins in the brain appears analogous to their function in the immune system: clearance of cellular material that has been tagged for elimination. Similarly, synapses tagged with complement proteins may be eliminated by microglial cells expressing complement receptors. In addition, developing astrocytes release signals that induce the expression of complement components in the CNS. In the mature brain, early synapse loss is a hallmark of several neurodegenerative diseases. Complement proteins are profoundly upregulated in many CNS diseases prior to signs of neuron loss, suggesting a reactivation of similar developmental mechanisms of complement-mediated synapse elimination potentially driving disease progression.
ISSN:0147-006X
1545-4126
DOI:10.1146/annurev-neuro-061010-113810