Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions
Abstract Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can a...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology ecology 2012-08, Vol.81 (2), p.419-426 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 426 |
---|---|
container_issue | 2 |
container_start_page | 419 |
container_title | FEMS microbiology ecology |
container_volume | 81 |
creator | Crowther, Thomas W. Littleboy, Adam Jones, T. Hefin Boddy, Lynne |
description | Abstract
Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can also exert selective pressures on fungal communities and alter the outcome of competitive fungal interactions; their potential to do so is determined by grazing intensity. Temperature regulates the abundance of soil collembola, but it remains unclear whether this will alter the top-down determination of fungal community composition. We use soil microcosms to explore the direct (via effects on interacting fungi) and indirect (by influencing top-down grazing pressures) effects of a 3 °C temperature increase on the outcomes of competitive interactions between cord-forming basidiomycete fungi. By differentially affecting the fungal growth rates, warming reversed the outcomes of specific competitive interactions. Collembola populations also increased at elevated temperature, and these larger, more active, populations exerted stronger grazing pressures. Consequently, grazing mitigated the effects of temperature on these interactions, restoring fungal communities to those recorded at ambient temperature. The interactive effects of biotic and abiotic factors are a key in determining the functional and ecological responses of microbial communities to climate change. |
doi_str_mv | 10.1111/j.1574-6941.2012.01364.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1028034068</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1111/j.1574-6941.2012.01364.x</oup_id><sourcerecordid>1028034068</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6204-afa731a4e713c6abc492b6f8cfcc6041e8e42e9871f5e3d05406cddc7e55cb723</originalsourceid><addsrcrecordid>eNqNkUtv1DAUhS0EosPAX0CREFI3CX7FzixYoKqllYrYwNpynOshUWIPttMHvx5nZlokEFK98ZXud8699kGoILgi-XwYKlJLXooNJxXFhFaYMMGru2do9dh4jlaYiKYUfCNO0KsYB4xJzTh-iU4o5YzWjVyh4colCNqk_gYKsBZMioW3xa0OU--2hXZd0bsbCAnaoBMU26B_LQ3vivQDCj8n4yfYa3Kxg9TvrezstnrM0qO7d_E1emH1GOHN8V6j7xfn384uy-uvn6_OPl2XRlDMS221ZERzkIQZoVvDN7QVtjHWGIE5gQY4hU0jia2BdbjmWJiuMxLq2rSSsjU6Pfjugv85Q0xq6qOBcdQO_BwVwbTB-R9E8xSUcykZX9B3f6GDn4PLD1GkJpJRWWdwjZoDZYKPMYBVu9BPOtxnK7VEpwa1JKSWhNQSndpHp-6y9O1xwNxO0D0KH7LKwPsjoKPRow3amT7-4QTJqMCZ-3jgbvsR7p-8gLo4_7JUWc8Oej_v_qMu_13_NyBlxA4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1517327577</pqid></control><display><type>article</type><title>Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Crowther, Thomas W. ; Littleboy, Adam ; Jones, T. Hefin ; Boddy, Lynne</creator><creatorcontrib>Crowther, Thomas W. ; Littleboy, Adam ; Jones, T. Hefin ; Boddy, Lynne</creatorcontrib><description>Abstract
Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can also exert selective pressures on fungal communities and alter the outcome of competitive fungal interactions; their potential to do so is determined by grazing intensity. Temperature regulates the abundance of soil collembola, but it remains unclear whether this will alter the top-down determination of fungal community composition. We use soil microcosms to explore the direct (via effects on interacting fungi) and indirect (by influencing top-down grazing pressures) effects of a 3 °C temperature increase on the outcomes of competitive interactions between cord-forming basidiomycete fungi. By differentially affecting the fungal growth rates, warming reversed the outcomes of specific competitive interactions. Collembola populations also increased at elevated temperature, and these larger, more active, populations exerted stronger grazing pressures. Consequently, grazing mitigated the effects of temperature on these interactions, restoring fungal communities to those recorded at ambient temperature. The interactive effects of biotic and abiotic factors are a key in determining the functional and ecological responses of microbial communities to climate change.</description><identifier>ISSN: 0168-6496</identifier><identifier>EISSN: 1574-6941</identifier><identifier>DOI: 10.1111/j.1574-6941.2012.01364.x</identifier><identifier>PMID: 22432587</identifier><identifier>CODEN: FMECEZ</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Abiotic factors ; Ambient temperature ; Animal, plant and microbial ecology ; Animals ; Arthropods - physiology ; Basidiomycetes ; Basidiomycota - growth & development ; Basidiomycota - physiology ; Biological and medical sciences ; Climate Change ; Collembola ; Community composition ; Competition ; decomposition ; Ecology ; Ecosystem ; ecosystem function ; Fundamental and applied biological sciences. Psychology ; fungal community ; Grazing ; Grazing intensity ; Herbivores ; High temperature ; Invertebrata ; Invertebrates ; Microbial activity ; Microbial ecology ; Microbiology ; Miscellaneous ; Mycology ; Nutrient cycles ; soil biodiversity ; soil fauna ; Soil Microbiology ; Temperature ; Various environments (extraatmospheric space, air, water) ; Wood - microbiology ; Woodlands</subject><ispartof>FEMS microbiology ecology, 2012-08, Vol.81 (2), p.419-426</ispartof><rights>2012 Federation of European Microbiological Societies 2012</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><rights>2015 INIST-CNRS</rights><rights>2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.</rights><rights>Copyright © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6204-afa731a4e713c6abc492b6f8cfcc6041e8e42e9871f5e3d05406cddc7e55cb723</citedby><cites>FETCH-LOGICAL-c6204-afa731a4e713c6abc492b6f8cfcc6041e8e42e9871f5e3d05406cddc7e55cb723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1574-6941.2012.01364.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1574-6941.2012.01364.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26122460$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22432587$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Crowther, Thomas W.</creatorcontrib><creatorcontrib>Littleboy, Adam</creatorcontrib><creatorcontrib>Jones, T. Hefin</creatorcontrib><creatorcontrib>Boddy, Lynne</creatorcontrib><title>Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions</title><title>FEMS microbiology ecology</title><addtitle>FEMS Microbiol Ecol</addtitle><description>Abstract
Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can also exert selective pressures on fungal communities and alter the outcome of competitive fungal interactions; their potential to do so is determined by grazing intensity. Temperature regulates the abundance of soil collembola, but it remains unclear whether this will alter the top-down determination of fungal community composition. We use soil microcosms to explore the direct (via effects on interacting fungi) and indirect (by influencing top-down grazing pressures) effects of a 3 °C temperature increase on the outcomes of competitive interactions between cord-forming basidiomycete fungi. By differentially affecting the fungal growth rates, warming reversed the outcomes of specific competitive interactions. Collembola populations also increased at elevated temperature, and these larger, more active, populations exerted stronger grazing pressures. Consequently, grazing mitigated the effects of temperature on these interactions, restoring fungal communities to those recorded at ambient temperature. The interactive effects of biotic and abiotic factors are a key in determining the functional and ecological responses of microbial communities to climate change.</description><subject>Abiotic factors</subject><subject>Ambient temperature</subject><subject>Animal, plant and microbial ecology</subject><subject>Animals</subject><subject>Arthropods - physiology</subject><subject>Basidiomycetes</subject><subject>Basidiomycota - growth & development</subject><subject>Basidiomycota - physiology</subject><subject>Biological and medical sciences</subject><subject>Climate Change</subject><subject>Collembola</subject><subject>Community composition</subject><subject>Competition</subject><subject>decomposition</subject><subject>Ecology</subject><subject>Ecosystem</subject><subject>ecosystem function</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>fungal community</subject><subject>Grazing</subject><subject>Grazing intensity</subject><subject>Herbivores</subject><subject>High temperature</subject><subject>Invertebrata</subject><subject>Invertebrates</subject><subject>Microbial activity</subject><subject>Microbial ecology</subject><subject>Microbiology</subject><subject>Miscellaneous</subject><subject>Mycology</subject><subject>Nutrient cycles</subject><subject>soil biodiversity</subject><subject>soil fauna</subject><subject>Soil Microbiology</subject><subject>Temperature</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Wood - microbiology</subject><subject>Woodlands</subject><issn>0168-6496</issn><issn>1574-6941</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkUtv1DAUhS0EosPAX0CREFI3CX7FzixYoKqllYrYwNpynOshUWIPttMHvx5nZlokEFK98ZXud8699kGoILgi-XwYKlJLXooNJxXFhFaYMMGru2do9dh4jlaYiKYUfCNO0KsYB4xJzTh-iU4o5YzWjVyh4colCNqk_gYKsBZMioW3xa0OU--2hXZd0bsbCAnaoBMU26B_LQ3vivQDCj8n4yfYa3Kxg9TvrezstnrM0qO7d_E1emH1GOHN8V6j7xfn384uy-uvn6_OPl2XRlDMS221ZERzkIQZoVvDN7QVtjHWGIE5gQY4hU0jia2BdbjmWJiuMxLq2rSSsjU6Pfjugv85Q0xq6qOBcdQO_BwVwbTB-R9E8xSUcykZX9B3f6GDn4PLD1GkJpJRWWdwjZoDZYKPMYBVu9BPOtxnK7VEpwa1JKSWhNQSndpHp-6y9O1xwNxO0D0KH7LKwPsjoKPRow3amT7-4QTJqMCZ-3jgbvsR7p-8gLo4_7JUWc8Oej_v_qMu_13_NyBlxA4</recordid><startdate>201208</startdate><enddate>201208</enddate><creator>Crowther, Thomas W.</creator><creator>Littleboy, Adam</creator><creator>Jones, T. Hefin</creator><creator>Boddy, Lynne</creator><general>Blackwell Publishing Ltd</general><general>Blackwell</general><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>7UA</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope></search><sort><creationdate>201208</creationdate><title>Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions</title><author>Crowther, Thomas W. ; Littleboy, Adam ; Jones, T. Hefin ; Boddy, Lynne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6204-afa731a4e713c6abc492b6f8cfcc6041e8e42e9871f5e3d05406cddc7e55cb723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Abiotic factors</topic><topic>Ambient temperature</topic><topic>Animal, plant and microbial ecology</topic><topic>Animals</topic><topic>Arthropods - physiology</topic><topic>Basidiomycetes</topic><topic>Basidiomycota - growth & development</topic><topic>Basidiomycota - physiology</topic><topic>Biological and medical sciences</topic><topic>Climate Change</topic><topic>Collembola</topic><topic>Community composition</topic><topic>Competition</topic><topic>decomposition</topic><topic>Ecology</topic><topic>Ecosystem</topic><topic>ecosystem function</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>fungal community</topic><topic>Grazing</topic><topic>Grazing intensity</topic><topic>Herbivores</topic><topic>High temperature</topic><topic>Invertebrata</topic><topic>Invertebrates</topic><topic>Microbial activity</topic><topic>Microbial ecology</topic><topic>Microbiology</topic><topic>Miscellaneous</topic><topic>Mycology</topic><topic>Nutrient cycles</topic><topic>soil biodiversity</topic><topic>soil fauna</topic><topic>Soil Microbiology</topic><topic>Temperature</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Wood - microbiology</topic><topic>Woodlands</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Crowther, Thomas W.</creatorcontrib><creatorcontrib>Littleboy, Adam</creatorcontrib><creatorcontrib>Jones, T. Hefin</creatorcontrib><creatorcontrib>Boddy, Lynne</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>FEMS microbiology ecology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Crowther, Thomas W.</au><au>Littleboy, Adam</au><au>Jones, T. Hefin</au><au>Boddy, Lynne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions</atitle><jtitle>FEMS microbiology ecology</jtitle><addtitle>FEMS Microbiol Ecol</addtitle><date>2012-08</date><risdate>2012</risdate><volume>81</volume><issue>2</issue><spage>419</spage><epage>426</epage><pages>419-426</pages><issn>0168-6496</issn><eissn>1574-6941</eissn><coden>FMECEZ</coden><abstract>Abstract
Saprotrophic fungal community composition, determined by the outcomes of competitive mycelial interactions, represents a key determinant of woodland carbon and nutrient cycling. Atmospheric warming is predicted to drive changes in fungal community composition. Grazing by invertebrates can also exert selective pressures on fungal communities and alter the outcome of competitive fungal interactions; their potential to do so is determined by grazing intensity. Temperature regulates the abundance of soil collembola, but it remains unclear whether this will alter the top-down determination of fungal community composition. We use soil microcosms to explore the direct (via effects on interacting fungi) and indirect (by influencing top-down grazing pressures) effects of a 3 °C temperature increase on the outcomes of competitive interactions between cord-forming basidiomycete fungi. By differentially affecting the fungal growth rates, warming reversed the outcomes of specific competitive interactions. Collembola populations also increased at elevated temperature, and these larger, more active, populations exerted stronger grazing pressures. Consequently, grazing mitigated the effects of temperature on these interactions, restoring fungal communities to those recorded at ambient temperature. The interactive effects of biotic and abiotic factors are a key in determining the functional and ecological responses of microbial communities to climate change.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>22432587</pmid><doi>10.1111/j.1574-6941.2012.01364.x</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-6496 |
ispartof | FEMS microbiology ecology, 2012-08, Vol.81 (2), p.419-426 |
issn | 0168-6496 1574-6941 |
language | eng |
recordid | cdi_proquest_miscellaneous_1028034068 |
source | Oxford Journals Open Access Collection; MEDLINE; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Abiotic factors Ambient temperature Animal, plant and microbial ecology Animals Arthropods - physiology Basidiomycetes Basidiomycota - growth & development Basidiomycota - physiology Biological and medical sciences Climate Change Collembola Community composition Competition decomposition Ecology Ecosystem ecosystem function Fundamental and applied biological sciences. Psychology fungal community Grazing Grazing intensity Herbivores High temperature Invertebrata Invertebrates Microbial activity Microbial ecology Microbiology Miscellaneous Mycology Nutrient cycles soil biodiversity soil fauna Soil Microbiology Temperature Various environments (extraatmospheric space, air, water) Wood - microbiology Woodlands |
title | Interactive effects of warming and invertebrate grazing on the outcomes of competitive fungal interactions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T19%3A33%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Interactive%20effects%20of%20warming%20and%20invertebrate%20grazing%20on%20the%20outcomes%20of%20competitive%20fungal%20interactions&rft.jtitle=FEMS%20microbiology%20ecology&rft.au=Crowther,%20Thomas%20W.&rft.date=2012-08&rft.volume=81&rft.issue=2&rft.spage=419&rft.epage=426&rft.pages=419-426&rft.issn=0168-6496&rft.eissn=1574-6941&rft.coden=FMECEZ&rft_id=info:doi/10.1111/j.1574-6941.2012.01364.x&rft_dat=%3Cproquest_cross%3E1028034068%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1517327577&rft_id=info:pmid/22432587&rft_oup_id=10.1111/j.1574-6941.2012.01364.x&rfr_iscdi=true |