Acquisition and Analysis of EMG Signals to Recognize Multiple Hand Movements for Prosthetic Applications
One of the main problems in developing active prosthesis is how to control them in a natural way. In order to increase the effectiveness of hand prostheses there is a need in better exploiting electromyography (EMG) signals. After an analysis of the movements necessary for grasping, we individuated...
Gespeichert in:
Veröffentlicht in: | Applied bionics and biomechanics 2012-01, Vol.9 (2), p.145-155 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | One of the main problems in developing active prosthesis is how to control them in a natural way. In order to increase the effectiveness of hand prostheses there is a need in better exploiting electromyography (EMG) signals. After an analysis of the movements necessary for grasping, we individuated five movements for the wrist-hand mobility. Then we designed the basic electronics and software for the acquisition and the analysis of the EMG signals. We built a small size electronic device capable of registering them that can be integrated into a hand prosthesis. Among all the numerous muscles that move the fingers, we have chosen the ones in the forearm and positioned only two electrodes. To recognize the operation, we developed a classification system, using a novel integration of Artificial Neural Networks (ANN) and wavelet features. |
---|---|
ISSN: | 1176-2322 1754-2103 |
DOI: | 10.1155/2012/792359 |