Applicability and robustness of the hen's egg test for analysis of micronucleus induction (HET-MN): Results from an inter-laboratory trial

The hen's egg test for analysis of micronucleus formation (HET-MN) was developed several years ago to provide an alternative test system to the in vivo micronucleus test. In order to assess its applicability and robustness, a study was carried out at the University of Osnabrueck (lab A) and at...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mutation research 2012-08, Vol.747 (1), p.118-134
Hauptverfasser: Greywe, Daniela, Kreutz, Jürgen, Banduhn, Norbert, Krauledat, Matthias, Scheel, Julia, Schroeder, Klaus R., Wolf, Thorsten, Reisinger, Kerstin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The hen's egg test for analysis of micronucleus formation (HET-MN) was developed several years ago to provide an alternative test system to the in vivo micronucleus test. In order to assess its applicability and robustness, a study was carried out at the University of Osnabrueck (lab A) and at the laboratories of Henkel AG & Co. KGaA (lab B). Following transfer of the method to lab B, a range of test substances that had been pre-tested at lab A, were tested at Henkel: the genotoxins cyclophosphamide, dimethylbenz(a)anthracene, methotrexate, acrylamide, azorubin, N-nitroso-dimethylamine and the non-genotoxins, orange G and isopropyl myristate. In a second phase, additional compounds with known in vivo properties were examined in both labs: the non-genotoxin, ampicillin, the “irrelevant” positives, isophorone and 2,4-dichlorophenol (“irrelevant” means positive in standard in vitro tests, but negative in vivo), the clastogen p-chloroaniline, and the aneugens carbendazim and vinorelbine. All substances were correctly predicted in both labs with respect to their in vivo genotoxic properties, indicating that the HET-MN may have an improved predictivity compared with current standard in vitro test systems. The results support the promising role of the HET-MN assay as a supplement to existing test batteries.
ISSN:1383-5718
0027-5107
1879-3592
DOI:10.1016/j.mrgentox.2012.04.012