The effect of EDTA on the groundwater transport of thorium through sand

The effect of the anthropogenic complexing agent EDTA on thorium transport in groundwater has been studied using sand-packed columns and flow rates in the range of 20–100 m y−1. The concentrations injected into the columns were in the range of 0.4–4 mM for Th and 4–40 mM for EDTA, and with EDTA:Th r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water research (Oxford) 2012-10, Vol.46 (15), p.4870-4882
Hauptverfasser: May, Colin C., Young, Lindsay, Worsfold, Paul J., Heath, Sarah, Bryan, Nick D., Keith-Roach, Miranda J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The effect of the anthropogenic complexing agent EDTA on thorium transport in groundwater has been studied using sand-packed columns and flow rates in the range of 20–100 m y−1. The concentrations injected into the columns were in the range of 0.4–4 mM for Th and 4–40 mM for EDTA, and with EDTA:Th ratios in the range 1:1 to 10:1. The results show that EDTA can significantly increase Th transport, but two very different behaviours are observed at Th concentrations of 0.4 and 4 mM. At the lower concentration, Th breakthrough is retarded with respect to a conservative tracer, with a peak width that is consistent with a single Kd value, followed by a longer tail, and the behaviour is very sensitive to the flow rate. However at 4 mM Th, the breakthrough peak appears near to that of the tracer, and the width of the peak is consistent with a distribution of Kd values and/or a larger dispersivity than the tracer. Speciation and transport modelling have been used to interpret the data, and a model was developed that could explain the 0.4 mM behaviour. This suggests that ternary surface complexes are important in these systems, with at least two different species involved, although the complexity of Th speciation in these systems leads to significant uncertainty in the values of the equilibrium and kinetic parameters. For the 4 mM systems, the rapid transport observed could not be explained by a simple chemical model; instead it is likely that EDTA plays an important role in stabilising and transporting thorium colloids and clusters. [Display omitted] ► EDTA has been shown to enhance thorium migration through sand significantly. ► Transport involves ternary interactions between Th-EDTA complexes and the sand. ► The concentration of thorium and EDTA affects the transport mechanism. ► A simple chemical model has been developed to explain thorium behaviour at low concentrations. ► Evidence is provided for mobile EDTA-stabilised thorium colloidal transport at high thorium and EDTA concentrations.
ISSN:0043-1354
1879-2448
DOI:10.1016/j.watres.2012.06.012