Jump-robust volatility estimation using nearest neighbor truncation

We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2012-07, Vol.169 (1), p.75-93
Hauptverfasser: Andersen, Torben G., Dobrev, Dobrislav, Schaumburg, Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 93
container_issue 1
container_start_page 75
container_title Journal of econometrics
container_volume 169
creator Andersen, Torben G.
Dobrev, Dobrislav
Schaumburg, Ernst
description We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators.
doi_str_mv 10.1016/j.jeconom.2012.01.011
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1027675477</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407612000127</els_id><sourcerecordid>1027675477</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-b61846fafd3c16b26ae1488b60d3b7fc8da2f7ef811a6ece39565e135d4057283</originalsourceid><addsrcrecordid>eNqFkE1Lw0AQhhdRsFZ_ghDw4iVxJ5v96Emk-EnBi56XZDOpG5Js3U0K_fdubU9ehIGXGZ55eWcIuQaaAQVx12YtGje4Pssp5BmFWHBCZqBkngq14KdkRhkt0oJKcU4uQmgppbxQbEaWb1O_Sb2rpjAmW9eVo-3suEswjLaPjRuSKdhhnQxY-jiMatdflfPJ6KfB_BKX5Kwpu4BXR52Tz6fHj-VLunp_fl0-rFJTKBjTSoAqRFM2NTMgqlyUCIVSlaA1q2RjVF3mjcRGAZQCDbIFFxyB8bqgXOaKzcntwXfj3fcUw-jeBoNdVw7opqCB5lJIXkgZ0Zs_aOsmP8R0kQLFmVJMRIofKONdCB4bvfHxar-L0J4TutXH1-r9azWFWBD37g97GK_dWvQ6GIuDwdp6NKOunf3H4QeDJYUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1018538836</pqid></control><display><type>article</type><title>Jump-robust volatility estimation using nearest neighbor truncation</title><source>Elsevier ScienceDirect Journals</source><creator>Andersen, Torben G. ; Dobrev, Dobrislav ; Schaumburg, Ernst</creator><creatorcontrib>Andersen, Torben G. ; Dobrev, Dobrislav ; Schaumburg, Ernst</creatorcontrib><description>We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2012.01.011</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Bias ; Economic efficiency ; Estimating techniques ; Estimation ; Finite activity jumps ; High-frequency data ; Integrated variance ; Intraday U-shape patterns ; Jump robustness ; Nearest neighbor truncation ; Rates of return ; Realized volatility ; Simulation ; Stock returns ; Studies ; Variance ; Volatility</subject><ispartof>Journal of econometrics, 2012-07, Vol.169 (1), p.75-93</ispartof><rights>2012 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Jul 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-b61846fafd3c16b26ae1488b60d3b7fc8da2f7ef811a6ece39565e135d4057283</citedby><cites>FETCH-LOGICAL-c481t-b61846fafd3c16b26ae1488b60d3b7fc8da2f7ef811a6ece39565e135d4057283</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0304407612000127$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Andersen, Torben G.</creatorcontrib><creatorcontrib>Dobrev, Dobrislav</creatorcontrib><creatorcontrib>Schaumburg, Ernst</creatorcontrib><title>Jump-robust volatility estimation using nearest neighbor truncation</title><title>Journal of econometrics</title><description>We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators.</description><subject>Asymptotic methods</subject><subject>Bias</subject><subject>Economic efficiency</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Finite activity jumps</subject><subject>High-frequency data</subject><subject>Integrated variance</subject><subject>Intraday U-shape patterns</subject><subject>Jump robustness</subject><subject>Nearest neighbor truncation</subject><subject>Rates of return</subject><subject>Realized volatility</subject><subject>Simulation</subject><subject>Stock returns</subject><subject>Studies</subject><subject>Variance</subject><subject>Volatility</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE1Lw0AQhhdRsFZ_ghDw4iVxJ5v96Emk-EnBi56XZDOpG5Js3U0K_fdubU9ehIGXGZ55eWcIuQaaAQVx12YtGje4Pssp5BmFWHBCZqBkngq14KdkRhkt0oJKcU4uQmgppbxQbEaWb1O_Sb2rpjAmW9eVo-3suEswjLaPjRuSKdhhnQxY-jiMatdflfPJ6KfB_BKX5Kwpu4BXR52Tz6fHj-VLunp_fl0-rFJTKBjTSoAqRFM2NTMgqlyUCIVSlaA1q2RjVF3mjcRGAZQCDbIFFxyB8bqgXOaKzcntwXfj3fcUw-jeBoNdVw7opqCB5lJIXkgZ0Zs_aOsmP8R0kQLFmVJMRIofKONdCB4bvfHxar-L0J4TutXH1-r9azWFWBD37g97GK_dWvQ6GIuDwdp6NKOunf3H4QeDJYUk</recordid><startdate>20120701</startdate><enddate>20120701</enddate><creator>Andersen, Torben G.</creator><creator>Dobrev, Dobrislav</creator><creator>Schaumburg, Ernst</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120701</creationdate><title>Jump-robust volatility estimation using nearest neighbor truncation</title><author>Andersen, Torben G. ; Dobrev, Dobrislav ; Schaumburg, Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-b61846fafd3c16b26ae1488b60d3b7fc8da2f7ef811a6ece39565e135d4057283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic methods</topic><topic>Bias</topic><topic>Economic efficiency</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Finite activity jumps</topic><topic>High-frequency data</topic><topic>Integrated variance</topic><topic>Intraday U-shape patterns</topic><topic>Jump robustness</topic><topic>Nearest neighbor truncation</topic><topic>Rates of return</topic><topic>Realized volatility</topic><topic>Simulation</topic><topic>Stock returns</topic><topic>Studies</topic><topic>Variance</topic><topic>Volatility</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Andersen, Torben G.</creatorcontrib><creatorcontrib>Dobrev, Dobrislav</creatorcontrib><creatorcontrib>Schaumburg, Ernst</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andersen, Torben G.</au><au>Dobrev, Dobrislav</au><au>Schaumburg, Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Jump-robust volatility estimation using nearest neighbor truncation</atitle><jtitle>Journal of econometrics</jtitle><date>2012-07-01</date><risdate>2012</risdate><volume>169</volume><issue>1</issue><spage>75</spage><epage>93</epage><pages>75-93</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2012.01.011</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2012-07, Vol.169 (1), p.75-93
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1027675477
source Elsevier ScienceDirect Journals
subjects Asymptotic methods
Bias
Economic efficiency
Estimating techniques
Estimation
Finite activity jumps
High-frequency data
Integrated variance
Intraday U-shape patterns
Jump robustness
Nearest neighbor truncation
Rates of return
Realized volatility
Simulation
Stock returns
Studies
Variance
Volatility
title Jump-robust volatility estimation using nearest neighbor truncation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T05%3A58%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Jump-robust%20volatility%20estimation%20using%20nearest%20neighbor%20truncation&rft.jtitle=Journal%20of%20econometrics&rft.au=Andersen,%20Torben%20G.&rft.date=2012-07-01&rft.volume=169&rft.issue=1&rft.spage=75&rft.epage=93&rft.pages=75-93&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2012.01.011&rft_dat=%3Cproquest_cross%3E1027675477%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1018538836&rft_id=info:pmid/&rft_els_id=S0304407612000127&rfr_iscdi=true