Jump-robust volatility estimation using nearest neighbor truncation

We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2012-07, Vol.169 (1), p.75-93
Hauptverfasser: Andersen, Torben G., Dobrev, Dobrislav, Schaumburg, Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose two new jump-robust estimators of integrated variance that allow for an asymptotic limit theory in the presence of jumps. Specifically, our MedRV estimator has better efficiency properties than the tripower variation measure and displays better finite-sample robustness to jumps and small (“zero”) returns. We stress the benefits of local volatility measures using short return blocks, as this greatly alleviates the downward biases stemming from rapid fluctuations in volatility, including diurnal (intraday) U-shape patterns. An empirical investigation of the Dow Jones 30 stocks and extensive simulations corroborate the robustness and efficiency properties of our nearest neighbor truncation estimators.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2012.01.011