Site-Specific Attachment of a Protein to a Carbon Nanotube End without Loss of Protein Function
Establishing a nanobiohybrid device largely relies on the availability of various bioconjugation procedures which allow coupling of biomolecules and inorganic materials. Especially, site-specific coupling of a protein to nanomaterials is highly useful and significant, since it can avoid adversely af...
Gespeichert in:
Veröffentlicht in: | Bioconjugate chemistry 2012-07, Vol.23 (7), p.1488-1493 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Establishing a nanobiohybrid device largely relies on the availability of various bioconjugation procedures which allow coupling of biomolecules and inorganic materials. Especially, site-specific coupling of a protein to nanomaterials is highly useful and significant, since it can avoid adversely affecting the protein’s function. In this study, we demonstrated a covalent coupling of a protein of interest to the end of carbon nanotubes without affecting protein’s function. A modified Staudinger-Bertozzi ligation was utilized to couple a carbon nanotube end with an azide group which is site-specifically incorporated into a protein of interest. We demonstrated that Ca2+-sensor protein, calmodulin, can be attached to the end of the nanotubes without affecting the ability to bind to the substrate in a calcium-dependent manner. This procedure can be applied not only to nanotubes, but also to other nanomaterials, and therefore provides a fundamental technique for well-controlled protein conjugation. |
---|---|
ISSN: | 1043-1802 1520-4812 |
DOI: | 10.1021/bc300131w |