Fatigue Strength of Ce-TZP/Al2O3 Nanocomposite with Different Surfaces
Ce-TZP/Al2O3 nanocomposite (NANOZR) has not only higher strength, but also higher fracture toughness than conventional Y-TZP, indicating its potential for use in dental implants. Surface treatment to obtain osseointegration, however, may alter its surface topography, thus affecting the cyclic fatigu...
Gespeichert in:
Veröffentlicht in: | Journal of dental research 2012-08, Vol.91 (8), p.800-804 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ce-TZP/Al2O3 nanocomposite (NANOZR) has not only higher strength, but also higher fracture toughness than conventional Y-TZP, indicating its potential for use in dental implants. Surface treatment to obtain osseointegration, however, may alter its surface topography, thus affecting the cyclic fatigue strength that plays such an important role in the durability of this material. The aim of this study was to evaluate the influence of surface treatment on cyclic fatigue strength in NANOZR as compared with grit-blasted and acid-etched Y-TZP (125BE Y-TZP). Bi-axial flexure strength was measured in both static and cyclic fatigue tests, as recommended by ISO 6872. The cyclic fatigue test was performed by the staircase method in distilled water at 37°C, with a load of 106 cycles and 10 Hz. Bi-axial flexure strength of NANOZR was 1111-1237 MPa and 667-881 MPa in the static and cyclic fatigue tests, respectively. The bi-axial flexure strength of NANOZR under all conditions was greater than that of 125BE Y-TZP in the static and cyclic fatigue tests. The cyclic fatigue strength of NANOZR was more than twice that of Y-TZP as specified in ISO 13356 for surgical implants (320 MPa), indicating the promise of this material for use in dental implants. |
---|---|
ISSN: | 0022-0345 1544-0591 |
DOI: | 10.1177/0022034512452277 |