Schedule-Dependent Cytotoxicity of Etoposide (VP-16) and Cyclophosphamide in Leukemia Cell Line K-562
In allogeneic bone marrow transplantation (allo-BMT) in patients with leukemia, the combination of VP-16 and cyclophosphamide (CY) is commonly used for the conditioning regimen. In the present study, we demonstrated schedule-dependent cytotoxicity of VP-16 and CY in K-562 cells. K-562 cells were pre...
Gespeichert in:
Veröffentlicht in: | Biological & pharmaceutical bulletin 2012/07/01, Vol.35(7), pp.1132-1136 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In allogeneic bone marrow transplantation (allo-BMT) in patients with leukemia, the combination of VP-16 and cyclophosphamide (CY) is commonly used for the conditioning regimen. In the present study, we demonstrated schedule-dependent cytotoxicity of VP-16 and CY in K-562 cells. K-562 cells were pretreated with low concentrations (2.5 and 5 µg/mL) of 4-hydroperoxycyclophosphamide (40487S), which is a preactivated analog of CY. It was confirmed that these concentrations did not influence cell viability. Cells subsequently exposed to 0.5-100 µg/mL of VP-16 showed reduced the viability compared to that of control cells not treated with 40487S. In contrast, there was no change in the viability of K-562 cells pretreated with low concentrations (0.5 and 1 µg/mL) of VP-16. It was confirmed that these concentrations did not influence cell viability. Viability of subsequently exposed to 1-20 µg/mL was not different from that of control cells not treated with VP-16. VP-16 caused cell cycle arrest at G2/M phase. On the other hand, 40487S arrested the cell cycle at S phase. Thymidine-synchronized cells, VP-16 showed cell cycle specificity for cell killing from early-S to mid-S phase. On the other hand, 40487S showed cell cycle-independent cytotoxicity. Exposure of cells to VP-16 after 40487S induced a greater cytotoxic effect on K-562 cells. The findings may lead to improvements in clinical combination chemotherapy. |
---|---|
ISSN: | 0918-6158 1347-5215 |
DOI: | 10.1248/bpb.b12-00159 |