Contact binaries: II. The importance of deformation caused by rotation and tides to the light curve of a contact binary

The theoretical light curves of contact binaries are calculated with and without putting in the contact binary evolution model. Firstly, we do not use the contact binary evolution model. A comparison of the light curve is performed with and without the deformation caused by rotation and tides. It sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science China. Physics, mechanics & astronomy mechanics & astronomy, 2012-05, Vol.55 (5), p.899-906
Hauptverfasser: Luo, ChangQing, Huang, RunQian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The theoretical light curves of contact binaries are calculated with and without putting in the contact binary evolution model. Firstly, we do not use the contact binary evolution model. A comparison of the light curve is performed with and without the deformation caused by rotation and tides. It shows that the light curve presents many differences, especially on the bottom and top. Secondly, we adopt the contact binary model [Huang R Q, et al. Chin J Astron Astrophys, 2007, 7: 235-244; Song H F, et al. Chin J Astron Astrophys, 2007, 7: 539-550] and compute the theoretical light curve with and without rotational and tidal effects by studying three binary systems (with low-, intermediate- and high-mass components). The bottom and top of the theoretical light curves are discussed and compared to observations. The results show that taking into account the rotational effect has a better agreement with observations than without it. Therefore, the deformation of the light curve of contact binaries caused by rotation and tides is very important. Meanwhile, the rotational and tidal effect can advance the start of the semi-detached, contact phase and the time of mass-reversal.
ISSN:1674-7348
1869-1927
DOI:10.1007/s11433-012-4697-6