An entropy-based improved k-top scoring pairs (TSP) method for classifying human cancers
Classification and prediction of different cancers based on gene-expression profiles are important for cancer diagnosis, cancer treatment and medication discovery. However, most data in the gene expression profile are not able to make a contribution to cancer classification and prediction. Hence, it...
Gespeichert in:
Veröffentlicht in: | African journal of biotechnology 2012-06, Vol.11 (45), p.10438-10445 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Classification and prediction of different cancers based on gene-expression profiles are important for cancer diagnosis, cancer treatment and medication discovery. However, most data in the gene expression profile are not able to make a contribution to cancer classification and prediction. Hence, it is important to find the key genes that are relevant. An entropy-based improved k-top scoring pairs (TSP) (Ik-TSP) method was presented in this study for the classification and prediction of human cancers based on gene-expression data. We compared Ik-TSP classifiers with 5 different machine learning methods and the k-TSP method based on 3 different feature selection methods on 9 binary class gene expression datasets and 10 multi-class gene expression datasets involving human cancers. Experimental results showed that the Ik-TSP method had higher accuracy. The experimental results also showed that the proposed method can effectively find genes that are important for distinguishing different cancer and cancer subtype. |
---|---|
ISSN: | 1684-5315 1684-5315 |
DOI: | 10.5897/AJB11.1016 |