Seasonal speedup of a Greenland marine-terminating outlet glacier forced by surface melt-induced changes in subglacial hydrology

We present subdaily ice flow measurements at four GPS sites between 36 and 72 km from the margin of a marine‐terminating Greenland outlet glacier spanning the 2009 melt season. Our data show that >35 km from the margin, seasonal and shorter–time scale ice flow variations are controlled by surface...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research 2011-09, Vol.116 (F3), p.n/a, Article F03014
Hauptverfasser: Sole, A. J., Mair, D. W. F., Nienow, P. W., Bartholomew, I. D., King, M. A., Burke, M. J., Joughin, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We present subdaily ice flow measurements at four GPS sites between 36 and 72 km from the margin of a marine‐terminating Greenland outlet glacier spanning the 2009 melt season. Our data show that >35 km from the margin, seasonal and shorter–time scale ice flow variations are controlled by surface melt–induced changes in subglacial hydrology. Following the onset of melting at each site, ice motion increased above background for up to 2 months with resultant up‐glacier migration of both the onset and peak of acceleration. Later in our survey, ice flow at all sites decreased to below background. Multiple 1 to 15 day speedups increased ice motion by up to 40% above background. These events were typically accompanied by uplift and coincided with enhanced surface melt or lake drainage. Our results indicate that the subglacial drainage system evolved through the season with efficient drainage extending to at least 48 km inland during the melt season. While we can explain our observations with reference to evolution of the glacier drainage system, the net effect of the summer speed variations on annual motion is small (∼1%). This, in part, is because the speedups are compensated for by slowdowns beneath background associated with the establishment of an efficient subglacial drainage system. In addition, the speedups are less pronounced in comparison to land‐terminating systems. Our results reveal similarities between the inland ice flow response of Greenland marine‐ and land‐terminating outlet glaciers. Key Points More than 35 km inland, ice flow variation is not forced by calving front changes More than 35 km inland, ice flow variation is instead forced by meltwater sliding The net effect of observed summer speed variations on annual motion is
ISSN:0148-0227
2169-9003
2156-2202
2169-9011
DOI:10.1029/2010JF001948