Magnetospheric injection of ELF/VLF waves with modulated or steered HF heating of the lower ionosphere

ELF/VLF waves have been generated via steerable HF heating of the lower ionosphere. The temperature‐dependent conductivity of the lower ionospheric plasma enables HF heating (and subsequent recovery) to modulate natural current systems such as the auroral electrojet, thus generating an antenna embed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Space Physics 2011-06, Vol.116 (A6), p.n/a
Hauptverfasser: Cohen, M. B., Inan, U. S., Piddyachiy, D., Lehtinen, N. G., Gołkowski, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ELF/VLF waves have been generated via steerable HF heating of the lower ionosphere. The temperature‐dependent conductivity of the lower ionospheric plasma enables HF heating (and subsequent recovery) to modulate natural current systems such as the auroral electrojet, thus generating an antenna embedded in the ionospheric plasma. We apply a realistic three‐dimensional model of HF heating and ionospheric recovery, as well as ELF/VLF wave propagation in and below the ionosphere, to derive the radiation pattern into the magnetosphere as a result of steerable HF heating. It is found that modulated HF heating preferentially directs signals upward into space because of the phasing effect of the upward HF wave propagation. We find that the steering techniques such as the geometric modulation “circle sweep” enhances the total ELF/VLF power injected into the magnetosphere by 5–7 dB compared to amplitude modulated heating, with a few dB enhancement in the peak magnetic field value. Another technique known as beam painting enhances the total injected power by 1–3 dB but produces weaker peak magnetic fields due to the power being spread over a larger area. Observations on the DEMETER spacecraft are presented and compared with theoretical predictions. DEMETER observations show that the signal produced with geometric modulation can be stronger than the signal from AM under the same conditions. Key Points Derived radiation patterns of modulated HF heating into magnetosphere Analyzed frequency dependence of magnetospheric injection from HF heating Compared beam steering techniques with amplitude modulation
ISSN:0148-0227
2169-9380
2156-2202
2169-9402
DOI:10.1029/2010JA016194