The role of the NTPDase enzyme family in parasites: what do we know, and where to from here?

Nucleoside triphosphate diphosphohydrolases (NTPDases, GDA1_CD39 protein superfamily) play a diverse range of roles in a number of eukaryotic organisms. In humans NTPDases function in regulating the inflammatory and immune responses, control of vascular haemostasis and purine salvage. In yeast NTPDa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Parasitology 2012-07, Vol.139 (8), p.963-980
1. Verfasser: SANSOM, FIONA M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nucleoside triphosphate diphosphohydrolases (NTPDases, GDA1_CD39 protein superfamily) play a diverse range of roles in a number of eukaryotic organisms. In humans NTPDases function in regulating the inflammatory and immune responses, control of vascular haemostasis and purine salvage. In yeast NTPDases are thought to function primarily in the Golgi, crucially involved in nucleotide sugar transport into the Golgi apparatus and subsequent protein glycosylation. Although rare in bacteria, in Legionella pneumophila secreted NTPDases function as virulence factors. In the last 2 decades it has become clear that a large number of parasites encode putative NTPDases, and the functions of a number of these have been investigated. In this review, the available evidence for NTPDases in parasites and the role of these NTPDases is summarized and discussed. Furthermore, the processes by which NTPDases could function in pathogenesis, purine salvage, thromboregulation, inflammation and glycoconjugate formation are considered, and the data supporting such putative roles reviewed. Potential future research directions to further clarify the role and importance of NTPDases in parasites are proposed. An attempt is also made to clarify the nomenclature used in the parasite field for the GDA1_CD39 protein superfamily, and a uniform system suggested.
ISSN:0031-1820
1469-8161
1469-8161
DOI:10.1017/S003118201200025X