PROTEOMIC AND UTR ANALYSES OF A RAPIDLY EVOLVING HYPERVARIABLE FAMILY OF VERTEBRATE PHEROMONES

During the annual mating season, the mental gland of male plethodontid salamanders diverts its protein synthesizing capacity to the production of courtship pheromones that increase female receptivity. Plethodontid modulating factor (PMF), a highly disulfide-bonded 7-kDa pheromone, shows unusual hype...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Evolution 2012-07, Vol.66 (7), p.2227-2239
Hauptverfasser: Wilburn, Damien B., Bowen, Kathleen E., Gregg, Ronald G., Cai, Jian, Feldhoff, Pamela W., Houck, Lynne D., Feldhoff, Richard C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:During the annual mating season, the mental gland of male plethodontid salamanders diverts its protein synthesizing capacity to the production of courtship pheromones that increase female receptivity. Plethodontid modulating factor (PMF), a highly disulfide-bonded 7-kDa pheromone, shows unusual hypervariability with each male expressing >30 isoforms. Twenty-eight PMFs were purified and matched by proteomic analyses to cDNA sequences. In contrast to coding sequence hypervariability, the untranslated regions (UTRs) show extraordinary conservation, no predicted microRNA binding sites, and an overlapping triplet polyadenylation signal. Full-length cDNA sequencing revealed three PMF gene classes containing subclasses of clustered sequences that support ≥13 PMF gene duplications. The unusual phenomena of hypervariable coding regions embedded within extremely conserved UTRs is proposed to occur by a disjunctive evolutionary process. During the short courtship season, the UTRs are hypothesized to subsume and coordinate the transcriptional and translational regulatory mechanisms of the mental gland. PMF, as a secreted protein with limited metabolic feedback in the male, is under minimal mutational restraint and thus has experienced highly accelerated rates of evolution. Consequently, plethodontid salamanders may provide a unique model for furthering our understanding of the selective forces that determine differential rates of gene duplication and evolution in protein families.
ISSN:0014-3820
1558-5646
DOI:10.1111/j.1558-5646.2011.01572.x