ARCH/GARCH with persistent covariate: Asymptotic theory of MLE

The paper considers a volatility model which introduces a persistent, integrated or near-integrated, covariate to the standard GARCH(1, 1) model. For such a model, we derive the asymptotic theory of the quasi-maximum likelihood estimator. In particular, we establish consistency and obtain limit dist...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2012-03, Vol.167 (1), p.95-112
Hauptverfasser: Han, Heejoon, Park, Joon Y.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper considers a volatility model which introduces a persistent, integrated or near-integrated, covariate to the standard GARCH(1, 1) model. For such a model, we derive the asymptotic theory of the quasi-maximum likelihood estimator. In particular, we establish consistency and obtain limit distribution. The limit distribution is generally non-Gaussian and represented as a functional of Brownian motions. However, it becomes Gaussian if the covariate has innovation uncorrelated with the squared innovation of the model or the volatility function is linear in parameter. We provide a simulation study to demonstrate the relevance and usefulness of our asymptotic theory.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2011.10.004