Nonparametric spatial regression under near-epoch dependence
This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving...
Gespeichert in:
Veröffentlicht in: | Journal of econometrics 2012-03, Vol.167 (1), p.224-239 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 239 |
---|---|
container_issue | 1 |
container_start_page | 224 |
container_title | Journal of econometrics |
container_volume | 167 |
creator | Jenish, Nazgul |
description | This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings. |
doi_str_mv | 10.1016/j.jeconom.2011.11.008 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023193391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407611002715</els_id><sourcerecordid>1023193391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKF48tKaadI2AUFk8R8setFziOlUU9qmJq3gtzdL9-RFeDAwvPeY-RFyDjQDCuVVm7Vo3OD6LKcAWRSl4oCsQFR5WgpZHJIVZZSnnFblMTkJoaWUFlywFbl-dsOove5x8tYkYdST1V3i8cNjCNYNyTzU6JMBtU9xdOYzqXHEuBsMnpKjRncBz_ZzTd7u7143j-n25eFpc7tNDZdiSgVjWuRNw_O8rkoQuUQOoEXR1CV9B5QGjKygAaarivEakBWco24EZ6YQFVuTy6V39O5rxjCp3gaDXacHdHNQQHMGkjEJ0Xrxx9q62Q_xOiVzzgVd-orFZLwLwWOjRm977X9ik9ohVa3aI1U7pCoqIo25myWH8dlvi14FY3cgauvRTKp29p-GXzT1gNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924480587</pqid></control><display><type>article</type><title>Nonparametric spatial regression under near-epoch dependence</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jenish, Nazgul</creator><creatorcontrib>Jenish, Nazgul</creatorcontrib><description>This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2011.11.008</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Asymptotic normality ; Consistency ; Convergence ; Econometric models ; Econometrics ; Empirical research ; Estimating techniques ; Estimation ; Heterogeneous random fields ; Local linear estimator ; Near-epoch dependent processes ; Near-epoch dependent spatial processes ; Non-linear models ; Nonparametric regression ; Random variables ; Regression analysis ; Spatial analysis ; Studies</subject><ispartof>Journal of econometrics, 2012-03, Vol.167 (1), p.224-239</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</citedby><cites>FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2011.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jenish, Nazgul</creatorcontrib><title>Nonparametric spatial regression under near-epoch dependence</title><title>Journal of econometrics</title><description>This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.</description><subject>Asymptotic methods</subject><subject>Asymptotic normality</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Empirical research</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Heterogeneous random fields</subject><subject>Local linear estimator</subject><subject>Near-epoch dependent processes</subject><subject>Near-epoch dependent spatial processes</subject><subject>Non-linear models</subject><subject>Nonparametric regression</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Spatial analysis</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKF48tKaadI2AUFk8R8setFziOlUU9qmJq3gtzdL9-RFeDAwvPeY-RFyDjQDCuVVm7Vo3OD6LKcAWRSl4oCsQFR5WgpZHJIVZZSnnFblMTkJoaWUFlywFbl-dsOove5x8tYkYdST1V3i8cNjCNYNyTzU6JMBtU9xdOYzqXHEuBsMnpKjRncBz_ZzTd7u7143j-n25eFpc7tNDZdiSgVjWuRNw_O8rkoQuUQOoEXR1CV9B5QGjKygAaarivEakBWco24EZ6YQFVuTy6V39O5rxjCp3gaDXacHdHNQQHMGkjEJ0Xrxx9q62Q_xOiVzzgVd-orFZLwLwWOjRm977X9ik9ohVa3aI1U7pCoqIo25myWH8dlvi14FY3cgauvRTKp29p-GXzT1gNo</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Jenish, Nazgul</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120301</creationdate><title>Nonparametric spatial regression under near-epoch dependence</title><author>Jenish, Nazgul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic normality</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Empirical research</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Heterogeneous random fields</topic><topic>Local linear estimator</topic><topic>Near-epoch dependent processes</topic><topic>Near-epoch dependent spatial processes</topic><topic>Non-linear models</topic><topic>Nonparametric regression</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Spatial analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenish, Nazgul</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenish, Nazgul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric spatial regression under near-epoch dependence</atitle><jtitle>Journal of econometrics</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>167</volume><issue>1</issue><spage>224</spage><epage>239</epage><pages>224-239</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2011.11.008</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0304-4076 |
ispartof | Journal of econometrics, 2012-03, Vol.167 (1), p.224-239 |
issn | 0304-4076 1872-6895 |
language | eng |
recordid | cdi_proquest_miscellaneous_1023193391 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Asymptotic methods Asymptotic normality Consistency Convergence Econometric models Econometrics Empirical research Estimating techniques Estimation Heterogeneous random fields Local linear estimator Near-epoch dependent processes Near-epoch dependent spatial processes Non-linear models Nonparametric regression Random variables Regression analysis Spatial analysis Studies |
title | Nonparametric spatial regression under near-epoch dependence |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20spatial%20regression%20under%20near-epoch%20dependence&rft.jtitle=Journal%20of%20econometrics&rft.au=Jenish,%20Nazgul&rft.date=2012-03-01&rft.volume=167&rft.issue=1&rft.spage=224&rft.epage=239&rft.pages=224-239&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2011.11.008&rft_dat=%3Cproquest_cross%3E1023193391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924480587&rft_id=info:pmid/&rft_els_id=S0304407611002715&rfr_iscdi=true |