Nonparametric spatial regression under near-epoch dependence

This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2012-03, Vol.167 (1), p.224-239
1. Verfasser: Jenish, Nazgul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 239
container_issue 1
container_start_page 224
container_title Journal of econometrics
container_volume 167
creator Jenish, Nazgul
description This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.
doi_str_mv 10.1016/j.jeconom.2011.11.008
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1023193391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304407611002715</els_id><sourcerecordid>1023193391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</originalsourceid><addsrcrecordid>eNqFkE9LxDAQxYMouK5-BKF48tKaadI2AUFk8R8setFziOlUU9qmJq3gtzdL9-RFeDAwvPeY-RFyDjQDCuVVm7Vo3OD6LKcAWRSl4oCsQFR5WgpZHJIVZZSnnFblMTkJoaWUFlywFbl-dsOove5x8tYkYdST1V3i8cNjCNYNyTzU6JMBtU9xdOYzqXHEuBsMnpKjRncBz_ZzTd7u7143j-n25eFpc7tNDZdiSgVjWuRNw_O8rkoQuUQOoEXR1CV9B5QGjKygAaarivEakBWco24EZ6YQFVuTy6V39O5rxjCp3gaDXacHdHNQQHMGkjEJ0Xrxx9q62Q_xOiVzzgVd-orFZLwLwWOjRm977X9ik9ohVa3aI1U7pCoqIo25myWH8dlvi14FY3cgauvRTKp29p-GXzT1gNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>924480587</pqid></control><display><type>article</type><title>Nonparametric spatial regression under near-epoch dependence</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Jenish, Nazgul</creator><creatorcontrib>Jenish, Nazgul</creatorcontrib><description>This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.</description><identifier>ISSN: 0304-4076</identifier><identifier>EISSN: 1872-6895</identifier><identifier>DOI: 10.1016/j.jeconom.2011.11.008</identifier><identifier>CODEN: JECMB6</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Asymptotic methods ; Asymptotic normality ; Consistency ; Convergence ; Econometric models ; Econometrics ; Empirical research ; Estimating techniques ; Estimation ; Heterogeneous random fields ; Local linear estimator ; Near-epoch dependent processes ; Near-epoch dependent spatial processes ; Non-linear models ; Nonparametric regression ; Random variables ; Regression analysis ; Spatial analysis ; Studies</subject><ispartof>Journal of econometrics, 2012-03, Vol.167 (1), p.224-239</ispartof><rights>2011 Elsevier B.V.</rights><rights>Copyright Elsevier Sequoia S.A. Mar 2012</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</citedby><cites>FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jeconom.2011.11.008$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Jenish, Nazgul</creatorcontrib><title>Nonparametric spatial regression under near-epoch dependence</title><title>Journal of econometrics</title><description>This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.</description><subject>Asymptotic methods</subject><subject>Asymptotic normality</subject><subject>Consistency</subject><subject>Convergence</subject><subject>Econometric models</subject><subject>Econometrics</subject><subject>Empirical research</subject><subject>Estimating techniques</subject><subject>Estimation</subject><subject>Heterogeneous random fields</subject><subject>Local linear estimator</subject><subject>Near-epoch dependent processes</subject><subject>Near-epoch dependent spatial processes</subject><subject>Non-linear models</subject><subject>Nonparametric regression</subject><subject>Random variables</subject><subject>Regression analysis</subject><subject>Spatial analysis</subject><subject>Studies</subject><issn>0304-4076</issn><issn>1872-6895</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkE9LxDAQxYMouK5-BKF48tKaadI2AUFk8R8setFziOlUU9qmJq3gtzdL9-RFeDAwvPeY-RFyDjQDCuVVm7Vo3OD6LKcAWRSl4oCsQFR5WgpZHJIVZZSnnFblMTkJoaWUFlywFbl-dsOove5x8tYkYdST1V3i8cNjCNYNyTzU6JMBtU9xdOYzqXHEuBsMnpKjRncBz_ZzTd7u7143j-n25eFpc7tNDZdiSgVjWuRNw_O8rkoQuUQOoEXR1CV9B5QGjKygAaarivEakBWco24EZ6YQFVuTy6V39O5rxjCp3gaDXacHdHNQQHMGkjEJ0Xrxx9q62Q_xOiVzzgVd-orFZLwLwWOjRm977X9ik9ohVa3aI1U7pCoqIo25myWH8dlvi14FY3cgauvRTKp29p-GXzT1gNo</recordid><startdate>20120301</startdate><enddate>20120301</enddate><creator>Jenish, Nazgul</creator><general>Elsevier B.V</general><general>Elsevier Sequoia S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BJ</scope><scope>FQK</scope><scope>JBE</scope></search><sort><creationdate>20120301</creationdate><title>Nonparametric spatial regression under near-epoch dependence</title><author>Jenish, Nazgul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-833a82ff422d761829e411a85fd60b1e9c1c971f13a7734d1e3544eaf843c5873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Asymptotic methods</topic><topic>Asymptotic normality</topic><topic>Consistency</topic><topic>Convergence</topic><topic>Econometric models</topic><topic>Econometrics</topic><topic>Empirical research</topic><topic>Estimating techniques</topic><topic>Estimation</topic><topic>Heterogeneous random fields</topic><topic>Local linear estimator</topic><topic>Near-epoch dependent processes</topic><topic>Near-epoch dependent spatial processes</topic><topic>Non-linear models</topic><topic>Nonparametric regression</topic><topic>Random variables</topic><topic>Regression analysis</topic><topic>Spatial analysis</topic><topic>Studies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jenish, Nazgul</creatorcontrib><collection>CrossRef</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>International Bibliography of the Social Sciences</collection><collection>International Bibliography of the Social Sciences</collection><jtitle>Journal of econometrics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jenish, Nazgul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonparametric spatial regression under near-epoch dependence</atitle><jtitle>Journal of econometrics</jtitle><date>2012-03-01</date><risdate>2012</risdate><volume>167</volume><issue>1</issue><spage>224</spage><epage>239</epage><pages>224-239</pages><issn>0304-4076</issn><eissn>1872-6895</eissn><coden>JECMB6</coden><abstract>This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.jeconom.2011.11.008</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-4076
ispartof Journal of econometrics, 2012-03, Vol.167 (1), p.224-239
issn 0304-4076
1872-6895
language eng
recordid cdi_proquest_miscellaneous_1023193391
source Elsevier ScienceDirect Journals Complete
subjects Asymptotic methods
Asymptotic normality
Consistency
Convergence
Econometric models
Econometrics
Empirical research
Estimating techniques
Estimation
Heterogeneous random fields
Local linear estimator
Near-epoch dependent processes
Near-epoch dependent spatial processes
Non-linear models
Nonparametric regression
Random variables
Regression analysis
Spatial analysis
Studies
title Nonparametric spatial regression under near-epoch dependence
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A02%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonparametric%20spatial%20regression%20under%20near-epoch%20dependence&rft.jtitle=Journal%20of%20econometrics&rft.au=Jenish,%20Nazgul&rft.date=2012-03-01&rft.volume=167&rft.issue=1&rft.spage=224&rft.epage=239&rft.pages=224-239&rft.issn=0304-4076&rft.eissn=1872-6895&rft.coden=JECMB6&rft_id=info:doi/10.1016/j.jeconom.2011.11.008&rft_dat=%3Cproquest_cross%3E1023193391%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=924480587&rft_id=info:pmid/&rft_els_id=S0304407611002715&rfr_iscdi=true