Nonparametric spatial regression under near-epoch dependence

This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of econometrics 2012-03, Vol.167 (1), p.224-239
1. Verfasser: Jenish, Nazgul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper establishes asymptotic normality and uniform consistency with convergence rates of the local linear estimator for spatial near-epoch dependent (NED) processes. The class of the NED spatial processes covers important spatial processes, including nonlinear autoregressive and infinite moving average random fields, which generally do not satisfy mixing conditions. Apart from accommodating a larger class of dependent processes, the proposed asymptotic theory allows for triangular arrays of heterogeneous random fields located on unevenly spaced lattices and sampled over regions of arbitrary configuration. All these features make the results applicable in a wide range of empirical settings.
ISSN:0304-4076
1872-6895
DOI:10.1016/j.jeconom.2011.11.008