Extremal functions of excluded tensor products of permutation matrices
For a 0–1 matrix Q, ex(n,Q) is the maximum number of 1s in an n×n 0–1 matrix of which no submatrix majorizes Q. We show that if P is a permutation matrix and Q is arbitrary, then the order of growth of ex(n,P⊗Q) is almost the same as that of ex(n,Q), extending a result used in Marcus and Tardos’s pr...
Gespeichert in:
Veröffentlicht in: | Discrete mathematics 2012-05, Vol.312 (10), p.1646-1649 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a 0–1 matrix Q, ex(n,Q) is the maximum number of 1s in an n×n 0–1 matrix of which no submatrix majorizes Q. We show that if P is a permutation matrix and Q is arbitrary, then the order of growth of ex(n,P⊗Q) is almost the same as that of ex(n,Q), extending a result used in Marcus and Tardos’s proof of the Stanley–Wilf conjecture. |
---|---|
ISSN: | 0012-365X 1872-681X |
DOI: | 10.1016/j.disc.2012.02.015 |