A structural analysis of asymptotic mean-square stability for multi-dimensional linear stochastic differential systems

We are concerned with a linear mean-square stability analysis of numerical methods applied to systems of stochastic differential equations (SDEs) and, in particular, consider the θ-Maruyama and the θ-Milstein method in this context. We propose an approach, based on the vectorisation of matrices and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied numerical mathematics 2012-07, Vol.62 (7), p.842-859
Hauptverfasser: Buckwar, Evelyn, Sickenberger, Thorsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We are concerned with a linear mean-square stability analysis of numerical methods applied to systems of stochastic differential equations (SDEs) and, in particular, consider the θ-Maruyama and the θ-Milstein method in this context. We propose an approach, based on the vectorisation of matrices and the Kronecker product, that allows us to deal efficiently with the matrix expressions arising in this analysis and that provides the explicit structure of the stability matrices in the general case of linear systems of SDEs. For a set of simple test SDE systems, incorporating different noise structures but only a few parameters, we apply the general results and provide visual and numerical comparisons of the stability properties of the two methods.
ISSN:0168-9274
1873-5460
DOI:10.1016/j.apnum.2012.03.002