Polypyrrole/MWCNT-gr-PSSA composite for flexible and highly conductive transparent film

This study compares the properties of a highly conductive polymer based on polypyrrole and multiwall carbon nanotubes (MWCNTs) grafted with poly (styrenesulfonic acid) (PPy/MWCNT‐gr‐PSSA) prepared for flexible indium tin oxide‐free organic solar cell (OSC) anode with those of PH500 poly(3,4‐ethylene...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied polymer science 2012-01, Vol.123 (1), p.388-397
Hauptverfasser: Lim, Tae Hwan, Oh, Kyung Wha, Kim, Seong Hun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study compares the properties of a highly conductive polymer based on polypyrrole and multiwall carbon nanotubes (MWCNTs) grafted with poly (styrenesulfonic acid) (PPy/MWCNT‐gr‐PSSA) prepared for flexible indium tin oxide‐free organic solar cell (OSC) anode with those of PH500 poly(3,4‐ethylenedioxythiophene) : poly(styrenesulfonate) (PEDOT : PSS) in various solvents. Hydrophilic poly(styrenesulfonic acid) (PSSA) was grafted on the MWCNT surfaces to improve dispersion of the MWCNT in an aqueous solution. MWCNT‐gr‐PSSA was added because MWCNT acts as a conductive additive and a template for the polymerization of PPy. Polymerization yields increased as the amount of MWCNT‐gr‐PSSA increased and reached a maximum when 50% of MWCNT‐gr‐PSSA was added. The conductivity of PPy/MWCNT‐gr‐PSSA composite was further improved and the value reached ∼ 152 S/cm with the addition of a toluenesulfonic acid (TSA)/HCl dopant mixture. To prepare a flexible OSC anode, PPy/MWCNT‐gr‐PSSA dissolved in solvent mixture, was coated onto a polyethylene terephthalate (PET) substrate. PPy/MWCNT‐gr‐PSSA was dissolved in a mixture of solvents including DMSO, NMP, EG, DEG, and glycerol of a high boiling point that was spin coated onto the PET, then annealed for 30 min at various temperatures. The conductivity of PPy/MWCNT‐gr‐PSSA was further enhanced with solvent treatment and annealing at temperature ranges of 100–175°C. Under optimum conditions, the conductivity and transmittance of PPy/MWCNT‐gr‐PSSA on PET reached 602 S/cm and 84% at 550 nm, respectively. In addition, it was confirmed that the energy level and mechanical strength of the film were suitable for OSC electrode use. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011
ISSN:0021-8995
1097-4628
1097-4628
DOI:10.1002/app.34507