The morphology and property of HDPE in the presence of oscillation pressure and poly(ethylene terephthalate)
The injection‐molded specimens of neat HDPE and the PET/HDPE blends were prepared by conventional injection molding (CIM) and by pressure vibration injection molding (PVIM), respectively. The effect of oscillation pressure and PET phase with different shapes on superstructure and its crystal orienta...
Gespeichert in:
Veröffentlicht in: | Journal of applied polymer science 2012-01, Vol.123 (2), p.682-690 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The injection‐molded specimens of neat HDPE and the PET/HDPE blends were prepared by conventional injection molding (CIM) and by pressure vibration injection molding (PVIM), respectively. The effect of oscillation pressure and PET phase with different shapes on superstructure and its crystal orientation distribution of injection molded samples were characterized by differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and two‐dimension wide‐angle X‐ray diffraction techniques (2D‐WAXD). Hermans' orientation functions were determined from the wide‐angle X‐ray diffraction patterns. With the PET particles added, the shear viscosity of blend increase and crystallization rate of HDPE phase is enhanced. For the neat HDPE samples, with the promotion from oscillation shear, the orientation parameter experienced a large increase, moreover, the PVIM can induce transverse lamellae (kebabs) twisting in growth direction. Because of the redefined flow field and nucleation effect of PET particles, the crystal orientation of blend is also increased. So the tensile strength of vibration samples enhanced and elongation at break declined. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011 |
---|---|
ISSN: | 0021-8995 1097-4628 1097-4628 |
DOI: | 10.1002/app.34499 |