An efficient finite element time-domain formulation for the elastic second-order wave equation: A non-split complex frequency shifted convolutional PML

The perfectly matched layer (PML) technique has demonstrated very high efficiency as absorbing boundary condition for the elastic wave equation recast as a first‐order system in velocity and stress in attenuating non‐grazing bulk and surface waves. This paper develops a novel convolutional PML formu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2011-12, Vol.88 (10), p.951-973
1. Verfasser: Matzen, René
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The perfectly matched layer (PML) technique has demonstrated very high efficiency as absorbing boundary condition for the elastic wave equation recast as a first‐order system in velocity and stress in attenuating non‐grazing bulk and surface waves. This paper develops a novel convolutional PML formulation based on the second‐order wave equation with displacements as the only unknowns to annihilate spurious reflections from near‐grazing waves. The derived variational form allows for the use of e.g. finite element and the spectral element methods as spatial discretization schemes. A recursive convolution update scheme of second‐order accuracy is employed such that highly stable, effective time integration with the Newmark‐beta (implicit and explicit with mass lumping) method is achieved. The implementation requires minor modifications of existing displacement‐based finite element software, and the stability and efficiency of the proposed formulation is verified by relevant two‐dimensional benchmarks that accommodate bulk and surface waves. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
1097-0207
DOI:10.1002/nme.3205