Graph diameter in long-range percolation

We study the asymptotic growth of the diameter of a graph obtained by adding sparse “long” edges to a square box in \documentclass{article} \usepackage{amsmath,amsfonts}\pagestyle{empty}\begin{document} ${\mathbb Z}^d$ \end{document}. We focus on the cases when an edge between x and y is added with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2011-09, Vol.39 (2), p.210-227
1. Verfasser: Biskup, Marek
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the asymptotic growth of the diameter of a graph obtained by adding sparse “long” edges to a square box in \documentclass{article} \usepackage{amsmath,amsfonts}\pagestyle{empty}\begin{document} ${\mathbb Z}^d$ \end{document}. We focus on the cases when an edge between x and y is added with probability decaying with the Euclidean distance as |x − y|−s+o(1) when |x − y| → ∞. For s ∈ (d, 2d) we show that the graph diameter for the graph reduced to a box of side L scales like (log L)Δ+o(1) where Δ−1 := log2(2d/s). In particular, the diameter grows about as fast as the typical graph distance between two vertices at distance L. We also show that a ball of radius r in the intrinsic metric on the (infinite) graph will roughly coincide with a ball of radius exp{r1/Δ+o(1)} in the Euclidean metric. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 210‐227, 2011
ISSN:1042-9832
1098-2418
1098-2418
DOI:10.1002/rsa.20349