Graph diameter in long-range percolation
We study the asymptotic growth of the diameter of a graph obtained by adding sparse “long” edges to a square box in \documentclass{article} \usepackage{amsmath,amsfonts}\pagestyle{empty}\begin{document} ${\mathbb Z}^d$ \end{document}. We focus on the cases when an edge between x and y is added with...
Gespeichert in:
Veröffentlicht in: | Random structures & algorithms 2011-09, Vol.39 (2), p.210-227 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the asymptotic growth of the diameter of a graph obtained by adding sparse “long” edges to a square box in
\documentclass{article} \usepackage{amsmath,amsfonts}\pagestyle{empty}\begin{document} ${\mathbb Z}^d$ \end{document}. We focus on the cases when an edge between x and y is added with probability decaying with the Euclidean distance as |x − y|−s+o(1) when |x − y| → ∞. For s ∈ (d, 2d) we show that the graph diameter for the graph reduced to a box of side L scales like (log L)Δ+o(1) where Δ−1 := log2(2d/s). In particular, the diameter grows about as fast as the typical graph distance between two vertices at distance L. We also show that a ball of radius r in the intrinsic metric on the (infinite) graph will roughly coincide with a ball of radius exp{r1/Δ+o(1)} in the Euclidean metric. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 39, 210‐227, 2011 |
---|---|
ISSN: | 1042-9832 1098-2418 1098-2418 |
DOI: | 10.1002/rsa.20349 |