Isogeometric finite element data structures based on Bézier extraction of T-splines

We develop finite element data structures for T‐splines based on Bézier extraction generalizing our previous work for NURBS. As in traditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial basis functions, the so‐called Bernstein basis. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical methods in engineering 2011-10, Vol.88 (2), p.126-156
Hauptverfasser: Scott, Michael A., Borden, Michael J., Verhoosel, Clemens V., Sederberg, Thomas W., Hughes, Thomas J. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We develop finite element data structures for T‐splines based on Bézier extraction generalizing our previous work for NURBS. As in traditional finite element analysis, the extracted Bézier elements are defined in terms of a fixed set of polynomial basis functions, the so‐called Bernstein basis. The Bézier elements may be processed in the same way as in a standard finite element computer program, utilizing exactly the same data processing arrays. In fact, only the shape function subroutine needs to be modified while all other aspects of a finite element program remain the same. A byproduct of the extraction process is the element extraction operator. This operator localizes the topological and global smoothness information to the element level, and represents a canonical treatment of T‐junctions, referred to as ‘hanging nodes’ in finite element analysis and a fundamental feature of T‐splines. A detailed example is presented to illustrate the ideas. Copyright © 2011 John Wiley & Sons, Ltd.
ISSN:0029-5981
1097-0207
1097-0207
DOI:10.1002/nme.3167