Effect of heat treatment on the properties and structure of TiO2 nanotubes: phase composition and chemical composition

Titanium oxide (TiO2) nanotubes prepared by electrolytic anodisation of a titanium electrode have been systematically heat treated to control the conversion of the as‐prepared amorphous structure to nanocrystalline anatase and rutile. Raman spectroscopy revealed that the temperature of calcination i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Surface and interface analysis 2010-03, Vol.42 (3), p.139-144
Hauptverfasser: Regonini, D., Jaroenworaluck, A., Stevens, R., Bowen, C.R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Titanium oxide (TiO2) nanotubes prepared by electrolytic anodisation of a titanium electrode have been systematically heat treated to control the conversion of the as‐prepared amorphous structure to nanocrystalline anatase and rutile. Raman spectroscopy revealed that the temperature of calcination is critical in determining the structure and crystallinity of the titania. X‐ray Photoelectron Spectroscopy analysis shows the as‐prepared film to consist mainly of oxide, although a small amount of fluoride contamination remains from the electrolyte. Organic components from post‐anodising cleaning treatments were also present. Fluorine ions are gradually ejected from the anodic layer during annealing and the fluorine concentration is negligible in samples that are heat treated above 400 °C. Choosing the appropriate annealing temperature allows the structure to be made up of defined proportions of anatase and rutile with a reduced contamination of species from the electrolyte or organic solvents. Copyright © 2010 John Wiley & Sons, Ltd.
ISSN:0142-2421
1096-9918
1096-9918
DOI:10.1002/sia.3183