Ground-state solutions for the electrostatic nonlinear Klein–Gordon–Maxwell system

In this paper, we study the nonlinear Klein–Gordon equation coupled with the Maxwell equation in the electrostatic case: (P) { − Δ u + [ m 2 − ( e ϕ + ω ) 2 ] u = f ( u ) , in  R 3 , Δ ϕ = e ( e ϕ + ω ) u 2 , in  R 3 , where m , e , ω > 0 . Benci and Fortunato (2002) [3] and D’Aprile and Mugnai (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear analysis 2011-10, Vol.74 (14), p.4796-4803
1. Verfasser: Wang, Feizhi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the nonlinear Klein–Gordon equation coupled with the Maxwell equation in the electrostatic case: (P) { − Δ u + [ m 2 − ( e ϕ + ω ) 2 ] u = f ( u ) , in  R 3 , Δ ϕ = e ( e ϕ + ω ) u 2 , in  R 3 , where m , e , ω > 0 . Benci and Fortunato (2002) [3] and D’Aprile and Mugnai (2004) [6], showed that, for any u ∈ H 1 ( R 3 ) , the second equation of problem (P) has a unique solution ϕ u ∈ D 1 , 2 ( R 3 ) , the map Λ : u ∈ H 1 ( R 3 ) ↦ ϕ u ∈ D 1 , 2 ( R 3 ) is continuously differentiable, and ϕ u ∈ [ − ω / e , 0 ] . Furthermore, we prove that max { − ω e − ϕ u , ϕ u } ≤ ψ u ≤ 0 , where ψ u = Λ ′ ( u ) [ u ] / 2 . Then, we consider the ground-state solution of problem (P) with f ( u ) = | u | p − 2 u , 2 < p < 6 .
ISSN:0362-546X
1873-5215
DOI:10.1016/j.na.2011.04.050