Ground-state solutions for the electrostatic nonlinear Klein–Gordon–Maxwell system
In this paper, we study the nonlinear Klein–Gordon equation coupled with the Maxwell equation in the electrostatic case: (P) { − Δ u + [ m 2 − ( e ϕ + ω ) 2 ] u = f ( u ) , in R 3 , Δ ϕ = e ( e ϕ + ω ) u 2 , in R 3 , where m , e , ω > 0 . Benci and Fortunato (2002) [3] and D’Aprile and Mugnai (...
Gespeichert in:
Veröffentlicht in: | Nonlinear analysis 2011-10, Vol.74 (14), p.4796-4803 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the nonlinear Klein–Gordon equation coupled with the Maxwell equation in the electrostatic case:
(P)
{
−
Δ
u
+
[
m
2
−
(
e
ϕ
+
ω
)
2
]
u
=
f
(
u
)
,
in
R
3
,
Δ
ϕ
=
e
(
e
ϕ
+
ω
)
u
2
,
in
R
3
,
where
m
,
e
,
ω
>
0
. Benci and Fortunato (2002)
[3] and D’Aprile and Mugnai (2004)
[6], showed that, for any
u
∈
H
1
(
R
3
)
, the second equation of problem
(P) has a unique solution
ϕ
u
∈
D
1
,
2
(
R
3
)
, the map
Λ
:
u
∈
H
1
(
R
3
)
↦
ϕ
u
∈
D
1
,
2
(
R
3
)
is continuously differentiable, and
ϕ
u
∈
[
−
ω
/
e
,
0
]
. Furthermore, we prove that
max
{
−
ω
e
−
ϕ
u
,
ϕ
u
}
≤
ψ
u
≤
0
,
where
ψ
u
=
Λ
′
(
u
)
[
u
]
/
2
. Then, we consider the ground-state solution of problem
(P) with
f
(
u
)
=
|
u
|
p
−
2
u
,
2
<
p
<
6
. |
---|---|
ISSN: | 0362-546X 1873-5215 |
DOI: | 10.1016/j.na.2011.04.050 |