Creep failure time prediction of polymers and polymer composites
A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is bas...
Gespeichert in:
Veröffentlicht in: | Composites science and technology 2012-05, Vol.72 (9), p.959-964 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 964 |
---|---|
container_issue | 9 |
container_start_page | 959 |
container_title | Composites science and technology |
container_volume | 72 |
creator | Spathis, G. Kontou, E. |
description | A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is based on a thermally activated rate process, while the emergence and growth of plastic strain, with increasing creep time, is also taken into account. When the accumulated strain attains values, high enough to lead to failure, its slope versus time exhibits an abrupt change. At this specific time, the creep rate function in respect to time appears a minimum. The creep failure time is defined as the time where the creep rate takes its minimum value. The model has been tested for various types of polymeric materials, as well as for polymer composites. Once the model parameters are estimated from short time creep strain data, then it was proved to successfully predict the creep failure time at a variety of stress levels, for all material types examined. |
doi_str_mv | 10.1016/j.compscitech.2012.03.018 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1022850864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0266353812001248</els_id><sourcerecordid>1022850864</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-20f29bea116ff68c7df8d075430bc6f979f97774cdc51adc16cf57ae11ca32e43</originalsourceid><addsrcrecordid>eNqNkMtKxDAUhoMoOF7eoS4EN625tGm6U4o3GHCj65A5PcEMbVOTjjBvb4YZxaWLcAh85_-Tj5ArRgtGmbxdF-CHKYKbET4KThkvqCgoU0dkwVTd5IxW9JgsKJcyF5VQp-QsxjWltK4aviB3bUCcMmtcvwmYzW7AbArYOZidHzNvs8n32wFDzMzY_VyyXamPqTRekBNr-oiXh3lO3h8f3trnfPn69NLeL3MQqpxzTi1vVmgYk9ZKBXVnVZfeUAq6AmmbukmnrkvooGKmAybBVrVBxsAIjqU4Jzf73Cn4zw3GWQ8uAva9GdFvomaUc1VRJXdos0ch-BgDWj0FN5iwTZDeWdNr_cea3lnTVOhkLe1eH2pMBNPbYEZw8TeAV6qWUlWJa_ccpj9_OQw6peEIyVxAmHXn3T_avgGQuYnO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1022850864</pqid></control><display><type>article</type><title>Creep failure time prediction of polymers and polymer composites</title><source>Elsevier ScienceDirect Journals</source><creator>Spathis, G. ; Kontou, E.</creator><creatorcontrib>Spathis, G. ; Kontou, E.</creatorcontrib><description>A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is based on a thermally activated rate process, while the emergence and growth of plastic strain, with increasing creep time, is also taken into account. When the accumulated strain attains values, high enough to lead to failure, its slope versus time exhibits an abrupt change. At this specific time, the creep rate function in respect to time appears a minimum. The creep failure time is defined as the time where the creep rate takes its minimum value. The model has been tested for various types of polymeric materials, as well as for polymer composites. Once the model parameters are estimated from short time creep strain data, then it was proved to successfully predict the creep failure time at a variety of stress levels, for all material types examined.</description><identifier>ISSN: 0266-3538</identifier><identifier>EISSN: 1879-1050</identifier><identifier>DOI: 10.1016/j.compscitech.2012.03.018</identifier><identifier>CODEN: CSTCEH</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>A. Polymers ; A. Polymer–matrix composites (PMCs) ; Applied sciences ; B. Creep ; C. Failure criterion ; Composites ; Creep (materials) ; Creep rate ; Exact sciences and technology ; Failure times ; Forms of application and semi-finished materials ; Mathematical models ; Organic polymers ; Physicochemistry of polymers ; Polymer industry, paints, wood ; Polymer matrix composites ; Polymers ; Properties and characterization ; Rheology and viscoelasticity ; Strain ; Stresses ; Technology of polymers</subject><ispartof>Composites science and technology, 2012-05, Vol.72 (9), p.959-964</ispartof><rights>2012 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-20f29bea116ff68c7df8d075430bc6f979f97774cdc51adc16cf57ae11ca32e43</citedby><cites>FETCH-LOGICAL-c384t-20f29bea116ff68c7df8d075430bc6f979f97774cdc51adc16cf57ae11ca32e43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.compscitech.2012.03.018$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25876685$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Spathis, G.</creatorcontrib><creatorcontrib>Kontou, E.</creatorcontrib><title>Creep failure time prediction of polymers and polymer composites</title><title>Composites science and technology</title><description>A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is based on a thermally activated rate process, while the emergence and growth of plastic strain, with increasing creep time, is also taken into account. When the accumulated strain attains values, high enough to lead to failure, its slope versus time exhibits an abrupt change. At this specific time, the creep rate function in respect to time appears a minimum. The creep failure time is defined as the time where the creep rate takes its minimum value. The model has been tested for various types of polymeric materials, as well as for polymer composites. Once the model parameters are estimated from short time creep strain data, then it was proved to successfully predict the creep failure time at a variety of stress levels, for all material types examined.</description><subject>A. Polymers</subject><subject>A. Polymer–matrix composites (PMCs)</subject><subject>Applied sciences</subject><subject>B. Creep</subject><subject>C. Failure criterion</subject><subject>Composites</subject><subject>Creep (materials)</subject><subject>Creep rate</subject><subject>Exact sciences and technology</subject><subject>Failure times</subject><subject>Forms of application and semi-finished materials</subject><subject>Mathematical models</subject><subject>Organic polymers</subject><subject>Physicochemistry of polymers</subject><subject>Polymer industry, paints, wood</subject><subject>Polymer matrix composites</subject><subject>Polymers</subject><subject>Properties and characterization</subject><subject>Rheology and viscoelasticity</subject><subject>Strain</subject><subject>Stresses</subject><subject>Technology of polymers</subject><issn>0266-3538</issn><issn>1879-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqNkMtKxDAUhoMoOF7eoS4EN625tGm6U4o3GHCj65A5PcEMbVOTjjBvb4YZxaWLcAh85_-Tj5ArRgtGmbxdF-CHKYKbET4KThkvqCgoU0dkwVTd5IxW9JgsKJcyF5VQp-QsxjWltK4aviB3bUCcMmtcvwmYzW7AbArYOZidHzNvs8n32wFDzMzY_VyyXamPqTRekBNr-oiXh3lO3h8f3trnfPn69NLeL3MQqpxzTi1vVmgYk9ZKBXVnVZfeUAq6AmmbukmnrkvooGKmAybBVrVBxsAIjqU4Jzf73Cn4zw3GWQ8uAva9GdFvomaUc1VRJXdos0ch-BgDWj0FN5iwTZDeWdNr_cea3lnTVOhkLe1eH2pMBNPbYEZw8TeAV6qWUlWJa_ccpj9_OQw6peEIyVxAmHXn3T_avgGQuYnO</recordid><startdate>20120521</startdate><enddate>20120521</enddate><creator>Spathis, G.</creator><creator>Kontou, E.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>20120521</creationdate><title>Creep failure time prediction of polymers and polymer composites</title><author>Spathis, G. ; Kontou, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-20f29bea116ff68c7df8d075430bc6f979f97774cdc51adc16cf57ae11ca32e43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>A. Polymers</topic><topic>A. Polymer–matrix composites (PMCs)</topic><topic>Applied sciences</topic><topic>B. Creep</topic><topic>C. Failure criterion</topic><topic>Composites</topic><topic>Creep (materials)</topic><topic>Creep rate</topic><topic>Exact sciences and technology</topic><topic>Failure times</topic><topic>Forms of application and semi-finished materials</topic><topic>Mathematical models</topic><topic>Organic polymers</topic><topic>Physicochemistry of polymers</topic><topic>Polymer industry, paints, wood</topic><topic>Polymer matrix composites</topic><topic>Polymers</topic><topic>Properties and characterization</topic><topic>Rheology and viscoelasticity</topic><topic>Strain</topic><topic>Stresses</topic><topic>Technology of polymers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spathis, G.</creatorcontrib><creatorcontrib>Kontou, E.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Composites science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spathis, G.</au><au>Kontou, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Creep failure time prediction of polymers and polymer composites</atitle><jtitle>Composites science and technology</jtitle><date>2012-05-21</date><risdate>2012</risdate><volume>72</volume><issue>9</issue><spage>959</spage><epage>964</epage><pages>959-964</pages><issn>0266-3538</issn><eissn>1879-1050</eissn><coden>CSTCEH</coden><abstract>A theoretical approach for the prediction of creep rupture time of polymers and polymer composites is analyzed in the present work. This analysis takes into account the viscoelastic path at small strains and the viscoplastic path at higher stresses. The calculation of the rate of creep strain is based on a thermally activated rate process, while the emergence and growth of plastic strain, with increasing creep time, is also taken into account. When the accumulated strain attains values, high enough to lead to failure, its slope versus time exhibits an abrupt change. At this specific time, the creep rate function in respect to time appears a minimum. The creep failure time is defined as the time where the creep rate takes its minimum value. The model has been tested for various types of polymeric materials, as well as for polymer composites. Once the model parameters are estimated from short time creep strain data, then it was proved to successfully predict the creep failure time at a variety of stress levels, for all material types examined.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.compscitech.2012.03.018</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0266-3538 |
ispartof | Composites science and technology, 2012-05, Vol.72 (9), p.959-964 |
issn | 0266-3538 1879-1050 |
language | eng |
recordid | cdi_proquest_miscellaneous_1022850864 |
source | Elsevier ScienceDirect Journals |
subjects | A. Polymers A. Polymer–matrix composites (PMCs) Applied sciences B. Creep C. Failure criterion Composites Creep (materials) Creep rate Exact sciences and technology Failure times Forms of application and semi-finished materials Mathematical models Organic polymers Physicochemistry of polymers Polymer industry, paints, wood Polymer matrix composites Polymers Properties and characterization Rheology and viscoelasticity Strain Stresses Technology of polymers |
title | Creep failure time prediction of polymers and polymer composites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T13%3A11%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Creep%20failure%20time%20prediction%20of%20polymers%20and%20polymer%20composites&rft.jtitle=Composites%20science%20and%20technology&rft.au=Spathis,%20G.&rft.date=2012-05-21&rft.volume=72&rft.issue=9&rft.spage=959&rft.epage=964&rft.pages=959-964&rft.issn=0266-3538&rft.eissn=1879-1050&rft.coden=CSTCEH&rft_id=info:doi/10.1016/j.compscitech.2012.03.018&rft_dat=%3Cproquest_cross%3E1022850864%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1022850864&rft_id=info:pmid/&rft_els_id=S0266353812001248&rfr_iscdi=true |